Application of Galerkin finite element method to atmospheric transport problems. (English) Zbl 0427.76044


76E20 Stability and instability of geophysical and astrophysical flows
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
86A99 Geophysics


Full Text: DOI


[1] Roache, P.J., Computational fluid dynamics, (1972), Hermosa, Albuquerque, New Mexico · Zbl 0251.76002
[2] Desai, C.S.; Abel, J.F., Introduction to the finite element method, (1972), Van Nostrand Reinhold New York
[3] Zienkiewicz, O.C., The finite element method in engineering science, (1971), McGraw-Hill London · Zbl 0237.73071
[4] Sklarew, R.C.; Fabrick, A.J.; Prager, J.E., Mathematical modeling of photochemical smog using the PICK method, J. air poll. control assoc., 22, 865-869, (1972)
[5] Egan, B.A.; Mahoney, J.R., Numerical modeling of advection and diffusion of urban area source pollutants, J. appl. meteor., 11, 312-321, (1972)
[6] Crowley, W.P., Numerical advection experiments, Mon. weather rev., 96, 1-11, (1968) · Zbl 0177.56504
[7] Molenkamp, C.R., Accuracy of finite-difference methods applied to the advection equation, J. appl. meteor., 7, 160-167, (1968)
[8] Long, P.E.; Pepper, D.W., A comparison of six numerical schemes for calculating the advection of atmospheric pollution, ()
[9] Meyer, J.P., Continued research in mesoscale air pollution simulation modeling, (1976), Systems Applications, PB-257 527, New York
[10] Price, H.S.; Varga, R.S.; Warren, J.E., Application of oscillation matrices to diffusion-convection equations, J. math. and phys., 45, 301-311, (1966) · Zbl 0143.38301
[11] Leith, C., Numerical simulation of the Earth’s atmosphere, Meth. in computat. phys., 4, 1-28, (1965)
[12] Brailovskaya, I.Y.; Kuskova, T.V.; Chudov, L.A., Difference methods of solving the Navier-Stokes equations, Int. chem. engng, 10, 228-236, (1971)
[13] Crowley, W.P., Second-order numerical advection, J. computat. phys., 1, 471-484, (1967) · Zbl 0149.44403
[14] Roberts, K.V.; Weiss, N.O., Convective difference schemes, Math. of computat., 20, 272-299, (1966) · Zbl 0137.33404
[15] Fromm, J.E., A method for reducing dispersion in convective difference schemes, J. computat. phys., 3, 176-189, (1968) · Zbl 0172.20202
[16] Fromm, J.E., Practical invesigation of convective difference approximations of reduced dispersion, High-speed computing in fluid dynamics—the physics of fluids supplement II, II3-II12, (1969)
[17] Book, D.L.; Boris, J.P.; Hair, K., Flux-corrected transport II: generalization of method, J. computat. phys., 18, 248-283, (1975) · Zbl 0306.76004
[18] Boris, J.P.; Book, D.L., Flux-corrected transport I. shasta, a fluid transport algorithm that works, J. computat. phys., 11, 38-69, (1973) · Zbl 0251.76004
[19] Boris, J.P.; Book, D.L., Flux-corrected transport III. minimal-error FCT algorithms, J. computat. phys., 20, 397-431, (1976) · Zbl 0325.76037
[20] Fairweather, G., Finite element Galerkin methods for different equations, () · Zbl 0737.65103
[21] Yanenko, N.N., The method of fractional steps, (1971), Springer Berlin · Zbl 0209.47103
[22] Mitchell, A.R., Computational methods in partial differential equations, (1969), Wiley New York · Zbl 0191.45201
[23] Peaceman, D.W.; Rachford, H.H., The numerical solution of parabolic and elliptic differential equations, J. soc. ind. appl. math., 3, 28-41, (1955) · Zbl 0067.35801
[24] Douglas, J.; Dupoint, T., Alternating-direction Galerkin methods on rectangles, (), 133-215
[25] Price, H.S.; Cavendish, J.C.; Varga, R.S., Numerical methods of higher-order accuracy for diffusion-convection equations, Soc. petr. engrs A. I. M. E. trans., 243, 293-303, (1968)
[26] Lam, D.C.L., Comparison of finite-element and finite-difference methods for nearshore advection-diffusion transport models, () · Zbl 0364.76077
[27] Lee, R.L.; Gresho, P.M.; Sani, R.L., A comparative study of certain finite element and finite difference methods in advection-diffusion simulations, () · Zbl 0941.76002
[28] Gresho, P.M.; Lee, R.L.; Sani, R.L., Modeling the planetary boundary layer using the Galerkin finite element method, () · Zbl 0446.76034
[29] Christensen, O.; Prahm, L.P., A pseudo-spectral model for dispersion of atmospheric pollutants, J. appl. meteor., 15, 1284-1294, (1976)
[30] Sheih, C.M., A puff-on-cell model for computing pollutant transport and diffusion, J. appl. meteor., 17, 140-147, (1978)
[31] Richtmyer, R.D., A survey of difference methods for non-steady fluid dynamics, NCAR technical note 63-2, (1963), Boulder, Colorado
[32] Lilly, D.K., On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems, Mon. weather rev., 93, 11-26, (1964)
[33] Christie, I.; Griffiths, D.F.; Mitchell, A.R.; Zienkiewicz, O.C., Finite element methods for second order differential equations with significant first derivatives, Int. J. num. meth. engng., 10, 1389-1396, (1976) · Zbl 0342.65065
[34] Heinrich, J.C.; Huyakorn, P.L.; Zienkiewicz, O.C., An “upwind” finite element scheme for two-dimensional convective transport equation, Int. J. num. meth. engng., 11, 131-143, (1977) · Zbl 0353.65065
[35] Heinrich, J.C.; Zienkiewicz, O.C., Quadratic finite element schemes for two-dimensional convective-transport problems, Int. J. num. meth. engng., 11, 1831-1844, (1977) · Zbl 0372.76002
[36] Carmicheal, G.R.; Peters, L.K., Numerical simulation of the regional transport of SO_{2} and sulfate in the eastern united states, ()
[37] T. Kitada and L. K. Peters, A model for CH_{4} and CO incorporating a time-varying wind field and tropopause height. Report to NASA on Research Grant NSG-1424 Final.
[38] Hindmarsh, A.C., Solution of block-tridiagonal system of linear algebraic equations, (1977), Lawrence Livermore Laboratory, Computer Document, UCID-30150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.