×

Interaction of an upwelling front with external vortices: impact on cross-shore particle exchange. (English) Zbl 07441646

Summary: Coastal upwellings, due to offshore Ekman transport, are more energetic at the western boundaries of the oceans, where they are intensified by incoming Rossby waves, than at the eastern boundaries. Western boundary upwellings are often accompanied by a local vortex field. The instability of a developed upwelling front and its interaction with an external vortex field is studied here with a three-dimensional numerical model of the hydrostatic rotating Navier-Stokes equations (the primitive equations). The baroclinic instability of the front leads to the growth of meanders with 100–200 km wavelength, in the absence of external vortex. On the \(f\)-plane, these waves can break into a row of vortices when the instability is intense. The \(\beta \)-effect is stabilizing and strongly decreases the amplitude of meanders. Simulations are then performed with a front initially accompanied by one or several external vortices. The evolutions in this case are compared with those of the unstable jet alone. On the \(f\)-plane, when an external vortex is close to the front, this latter sheds a long filament which wraps up around the vortex. This occurs over a period similar to that of the instability of the isolated front. Cyclones are more efficient in tearing such filaments offshore than anticyclones. On the \(\beta \)-plane, the filaments are short and turbulence is confined to the vicinity of the front. At long times, waves propagate along the front, thus extending turbulence alongshore. The initial presence of a vortex alley leads to a stronger destabilization of the front and to a larger cross-shore flux than for a single vortex, with many filaments and small vortices pushed far offshore. In the ocean, this cross-shore exchange has important consequences on the local biological activity.

MSC:

76E05 Parallel shear flows in hydrodynamic stability
76E20 Stability and instability of geophysical and astrophysical flows
76U05 General theory of rotating fluids
76B47 Vortex flows for incompressible inviscid fluids

Software:

Gibbs Seawater; GSW; ROMS
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Al Saafani, M. A.; Shenoi, S. S. C.; Shankar, D.; Aparna, M.; Kurian, J.; Durand, F., and Vinayachandran, P. N.; Vinayachandran, P. N., Westward Movement of Eddies into the Gulf of Aden from the Arabian Sea, J. Geophys. Res. Oceans, 112 (2007)
[2] Ayouche, A.; De Marez, Ch.; Morvan, M.; L’Hegaret, P.; Carton, X.; Le Vu, B.; Stegner, A., Structure and Dynamics of the Ras al Hadd Oceanic Dipole, Oceans, 2, 1, 105-125 (2021)
[3] Baey, J.-M.; Rivière, P.; Carton, X., Ocean Jet Instability: A Model Comparison, ESAIM: Proc., 7, 12-23 (1999) · Zbl 0942.76021
[4] Barth, J. A., Short-Wave Length Instabilities on Coastal Jets and Fronts, J. Geophys. Res. Oceans, 99, C8, 16095-16115 (1994)
[5] t, P., Stramma, L., Schott, F., Fischer, J., Dengler, M., and Quadfasel, D., Annual Rossby Waves in the Arabian Sea from TOPEX/POSEIDON Altimeter and in Situ Data, Deep Sea Res. Part 2 Top. Stud. Oceanogr., 49, 1197-1210 (2002)
[6] Bruce, J. G., Some Details of Upwelling Off the Somali and Arabian Coasts, J. Mar. Res., 32, 419-423 (1974)
[7] Bruce, J. G.; Johnson, D. R.; Kindle, J. C., Evidence for Eddy Formation in the Eastern Arabian Sea during the Northeast Monsoon, J. Geophys. Res. Oceans, 99, C4, 7651-7664 (1994)
[8] Capet, X.; Carton, X., Nonlinear Regimes of Baroclinic Boundary Currents, J. Phys. Oceanogr., 34, 6, 1400-1409 (2004)
[9] Chaigneau, A.; Le Texier, M.; Eldin, G.; Grados, C.; Pizarro, O., Vertical Structure of Mesoscale Eddies in the Eastern South Pacific Ocean: A Composite Analysis from Altimetry and Argo Profiling Floats, J. Phys. Oceanogr., 116 (2011)
[10] Chelton, D. B.; deSzoeke, R. A.; Schlax, M. G.; El Naggar, K.; Siwertz, N., Geographical Variability of the First Baroclinic Rossby Radius of Deformation, J. Phys. Oceanogr., 28, 3, 433-460 (1998)
[11] Csanady, G. T., On the Structure of Transient Upwelling Events, J. Phys. Oceanogr., 12, 1, 84-96 (1982)
[12] Currie, R., Circulation and Upwelling Off the Coast of South-East Arabia, Oceanol. Acta, 15, 1, 43-60 (1992)
[13] meter, P. and van Sebille, E., The Parcels v2.0 Lagrangian Framework: New Field Interpolation Schemes, Geosci. Model Dev., 12, 8, 3571-3584 (2019)
[14] Elliott, A. J.; Savidge, G., Some Features of the Upwelling Off Oman, J. Mar. Res., 48, 319-333 (1990)
[15] Fischer, A. S.; Weller, R. A.; Rudnick, D. L.; Eriksen, C. C.; Lee, C. M.; Brink, K. H.; Fox, C. A.; Leben, R. R., Mesoscale Eddies, Coastal Upwelling, and the Upper-Ocean Heat Budget in the Arabian Sea, Deep Sea Res. Part 2 Top. Stud. Oceanogr., 49, 2231-2264 (2002)
[16] Flierl, G. R.; Carton, X. J.; Messager, Ch., Vortex Formation by Unstable Oceanic Jets, ESAIM: Proc., 7, 137-150 (1999) · Zbl 0945.76027
[17] Hidaka, K., Physical Oceanography of Upwelling, Geoforum, 3, 3, 9-21 (1972)
[18] Hoskins, B., The Mathematical Theory of Frontogenesis, Ann. Rev. Fluid Mech., 14, 131-151 (1982) · Zbl 0488.76030
[19] Keppler, L.; Cravatte, S.; Chaigneau, A.; Pegliasco, C.; Gourdeau, L.; Singh, A., Observed Characteristics and Vertical Structure of Mesoscale Eddies in the Southwest Tropical Pacific, J. Geophys. Res. Oceans, 123, 4, 2731-2756 (2018)
[20] Klein, P.; Hua, B. L.; Lapeyre, G.; Capet, X.; Le Gentil, S.; Sasaki, H., Upper Ocean Turbulence from High-Resolution 3D Simulations, J. Phys. Oceanogr., 38, 8, 1748-1763 (2008)
[21] Lange, M.; van Sebille, E., Parcels v0.9: Prototyping a Lagrangian Ocean Analysis Framework for the Petascale Age, Geosci. Model Dev. Discuss., 10, 4175-4186 (2017)
[22] Large, W. G.; McWilliams, J. C.; Doney, S. C., Oceanic Vertical Mixing: A Review and a Model with a Nonlocal Boundary Layer Parameterization, Rev. Geophys., 32, 4, 363-403 (1994)
[23] Liao, X.; Zhan, H.; Du, Y., Potential New Production in Two Upwelling Regions of the Western Arabian Sea: Estimation and Comparison, J. Geophys. Res. Oceans, 121, 7, 4487-4502 (2016)
[24] Manghnani, V.; Morrison, J. M.; Hopkins, T. S.; Böhm, E., Advection of Upwelled Waters in the Form of Plumes Off Oman during the Southwest Monsoon, Deep Sea Res. Part 2 Top. Stud. Oceanogr., 45, 10-11, 2027-2052 (1998)
[25] de Marez, C.; Carton, X.; L’Hégaret, P.; Meunier, T.; Stegner, A.; Le Vu, B.; Morvan, M., Oceanic Vortex Mergers Are Not Isolated but Influenced by the \(\beta \)-Effect and Surrounding Eddies, Sci. Rep., 10, 1 (2020)
[26] de Marez, Ch.; L’Hegaret, P.; Morvan, M.; Carton, X., On the 3D Structure of Eddies in the Arabian Sea, Deep Sea Res. Part 1 Oceanogr. Res. Pap., 150 (2019)
[27] de Marez, Ch.; Meunier, T.; Morvan, M.; L’Hégaret, P.; Carton, X., Study of the Stability of a Large Realistic Cyclonic Eddy, Ocean Model., 146 (2020)
[28] de Marez, Ch.; Meunier, Th.; Tedesco, P.; L’Hégaret, P.; Carton, X., Vortex Wall Interaction on the \(\beta \)-Plane and the Generation of Deep Submesoscale Cyclones by Internal Kelvin Waves Current Interactions, Geophys. Astrophys. Fluid Dyn., 114, 4-5, 588-606 (2020)
[29] McCreary, J., A Linear Stratified Ocean Model of the Coastal Undercurrent, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 302, 1469, 385-413 (1981)
[30] McDougall, T. J.; Barker, P. M., Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox (2011), SCOR/IAPSO WG127
[31] Ménesguen, C.; Le Gentil, S.; Marchesiello, P.; Ducousso, N., Destabilization of an Oceanic Meddy-Like Vortex: Energy Transfers and Significance of Numerical Settings, J. Phys. Oceanogr., 48, 5, 1151-1168 (2018)
[32] Meunier, T.; Rossi, V.; Morel, Y.; Carton, X., Influence of Bottom Topography on an Upwelling Current: Generation of Long Trapped Filaments, Ocean Model., 35, 4, 277-303 (2010)
[33] Pedlosky, J., Longshore Currents and the Onset of Upwelling over Bottom Slope, J. Phys. Oceanogr., 4, 3, 310-320 (1974)
[34] Pedlosky, J., An Inertial Model of Steady Coastal Upwelling, J. Phys. Oceanogr., 8, 2, 171-177 (1978)
[35] Pedlosky, J., A Nonlinear Model of the Onset of Upwelling, J. Phys. Oceanogr., 8, 2, 178-187 (1978)
[36] Pegliasco, C.; Chaigneau, A.; Morrow, R., Main Eddy Vertical Structures Observed in the Four Major Eastern Boundary Upwelling Systems, J. Geophys. Res. Oceans, 120, 9, 6008-6033 (2015)
[37] Piontkovski, S.; Al-Jufaili, S., Coastal Upwellings and Mesoscale Eddies of the Western Arabian Sea: Some Biological Implications, Int. J. Oceans Oceanogr., 7, 2, 93-115 (2013)
[38] Pratt, L. J.; Stern, M. E., Dynamics of Potential Vorticity Fronts and Eddy Detachment, J. Phys. Oceanogr., 16, 6, 1101-1120 (1986)
[39] Privett, D., Monthly Charts of Evaporation from the North Indian Ocean (including the Red Sea and the Persian Gulf), Q. J. R. Meteorol. Soc., 85, 366, 424-428 (1959)
[40] Sastry, J.; d’Souza, R., Upwelling and Upward Mixing in the Arabian Sea, Indian J. Mar. Sci., 1, 17-27 (1972)
[41] Schott, F. A.; Fischer, J., Winter Monsoon Circulation of the Northern Arabian Sea and Somali Current, J. Geophys. Res. Oceans, 105, C3, 6359-6376 (2000)
[42] Shchepetkin, A. F.; McWilliams, J. C., The Regional Oceanic Modeling System (ROMS): A Split-Explicit, Free-Surface, Topography-Following-Coordinate Oceanic Model, Ocean Model., 9, 4, 347-404 (2005)
[43] Shchepetkin, A. F.; McWilliams, J. C., Accurate Boussinesq Oceanic Modeling with a Practical, “Stiffened” Equation of State, Ocean Model., 38, 1, 41-70 (2011)
[44] Shi, W.; Morrison, J. M.; Böhm, E.; Manghnani, V., The Oman Upwelling Zone during 1993, 1994 and 1995, Deep Sea Res. Part 2 Top. Stud. Oceanogr., 47, 7-8, 1227-1247 (2000)
[45] Smith, W. H. F.; Sandwell, D. T., Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings, Science, 277, 5334, 1956-1962 (1997)
[46] Stern, M. E.; Flierl, G. R., On the Interaction of a Vortex with a Shear Flow, J. Geophys. Res. Oceans, 92, C10, 10733-10744 (1987)
[47] Suginohara, N., Upwelling Front and Two-Cell Circulation, J. Meteor. Soc. Japan, 33, 115-130 (1977)
[48] Trott, C. B.; Subrahmanyam, B.; Chaigneau, A.; Roman-Stork, H. L., Eddy-Induced Temperature and Salinity Variability in the Arabian Sea, Geophys. Res. Lett., 46, 5, 2734-2742 (2019)
[49] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (2017), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1374.86002
[50] ermeirsch, F., Carton, X., and Morel, Y., Interaction between an Eddy and a Zonal Jet: P. 2. Two-and-a-Half-Layer Model, Dynam. Atmos. Oceans, 36, 4, 271-296 (2003)
[51] ermeirsch, F., Carton, X., and Morel, Y., Interaction between an Eddy and a Zonal Jet: P. 1. One-and-a-Half-Layer Model, Dynam. Atmos. Oceans, 36, 4, 247-270 (2003)
[52] Vic, C.; Capet, X.; Roullet, G.; Carton, X., Western Boundary Upwelling Dynamics Off Oman, Ocean Dyn., 67, 585-595 (2017)
[53] Vic, C.; Capet, X.; Roullet, G.; Carton, X.; Molemaker, M. J.; Gula, J., Eddy-Topography Interactions and the Fate of the Persian Gulf Outflow, J. Geophys. Res. Oceans, 120, 6700-6717 (2015)
[54] Yoshida, K., Coastal Upwelling Off the California Coast, Rec. Oceanogr. Works Japan (N. S.), 2, 2, 8-20 (1955)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.