Circular geodesics and thick tori around rotating boson stars. (English) Zbl 1329.83058


83C10 Equations of motion in general relativity and gravitational theory
53Z05 Applications of differential geometry to physics
85A15 Galactic and stellar structure
76E20 Stability and instability of geophysical and astrophysical flows
83C57 Black holes


Full Text: DOI arXiv


[1] Abramowicz M, Jaroszynski M and Sikora M 1978 Relativistic, accreting disks Astron. Astrophys.63 221–4 · Zbl 0375.53036
[2] Abramowicz M A 2009 Five ideas on black hole accretion disks The Variable Universe: A Celebration of Bohdan Paczynski ed K Z Stanek pp 29–30
[3] Bardeen J M, Press W H and Teukolsky S A 1972 Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation Astrophys. J.178 347–70
[4] Bonazzola S and Pacini F 1966 Equilibrium of a Large assembly of particles in general relativity Phys. Rev.148 1269–70
[5] Dibi S, Drappeau S, Fragile P C, Markoff S and Dexter J 2012 General relativistic magnetohydrodynamic simulations of accretion on to Sgr A*: how important are radiative losses? MNRAS426 1928–39
[6] Diemer V, Eilers K, Hartmann B, Schaffer I and Toma C 2013 Geodesic motion in the space–time of a noncompact boson star Phys. Rev. D 88 044025
[7] Doeleman S S et al 2008 Event-horizon-scale structure in the supermassive black hole candidate at the galactic centre Nature455 78–80
[8] Doeleman S et al 2009 Imaging an event horizon: submm-VLBI of a super massive black hole p 68 Astro2010: The Astronomy and Astrophysics Decadal Survey
[9] Eisenhauer F et al 2011 GRAVITY: observing the Universe in motion Messenger143 16–24
[10] Fishbone L G and Moncrief V 1976 Relativistic fluid disks in orbit around Kerr black holes Astrophys. J.207 962–76
[11] Font J A and Daigne F 2002 The runaway instability of thick discs around black hole: I. The constant angular momentum case MNRAS334 383–400
[12] Fragile P C, Olejar A and Anninos P 2014 Numerical simulations of optically thick accretion onto a black hole: II. Rotating flow Astrophys. J.796 22
[13] Gourgoulhon E 2010 An introduction to the theory of rotating relativistic stars arXiv:1003.5015
[14] Grandclément P 2010 KADATH: a spectral solver for theoretical physics J. Comput. Phys.229 3334–57 · Zbl 1187.83056
[15] Grandclément P, Somé C and Gourgoulhon E 2014 Models of rotating boson stars and geodesics around them: new type of orbits Phys. Rev. D 90 024068
[16] Kaup D J and Geon K-G 1968 Phys. Rev.172 1331–42
[17] Komissarov S S 2006 Magnetized tori around Kerr black holes: analytic solutions with a toroidal magnetic field MNRAS368 993–1000
[18] Kormendy J and Ho L C 2013 Coevolution (or not) of supermassive black holes and host galaxies Annu. Rev. Astron. Astrophys.51 511–653
[19] Kozlowski M, Jaroszynski M and Abramowicz M A 1978 The analytic theory of fluid disks orbiting the Kerr black hole Astron. Astrophys.63 209–20 · Zbl 0394.76097
[20] Liebling S L and Palenzuela C 2012 Dynamical boson stars Living Rev. Relativ.15 6 · Zbl 1320.83006
[21] Macedo C F B, Pani P, Cardoso V and Crispino L C B 2013 Astrophysical signatures of boson stars: quasinormal modes and inspiral resonances Phys. Rev. D 88 064046
[22] McKinney J C, Tchekhovskoy A, Sadowski A and Narayan R 2014 Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure MNRAS441 3177–208
[23] Schunck F E and Mielke E W 1996 Rotating boson stars Relativity and Scientific Computing. Computer Algebra, Numerics, Visualization ed F W Hehl et al pp 138–151
[24] Straub O, Vincent F H, Abramowicz M A, Gourgoulhon E and Paumard T 2012 Modelling the black hole silhouette in Sagittarius A* with ion tori Astron. Astrophys.543 A83
[25] Torres D F, Capozziello S and Lambiase G 2000 Supermassive boson star at the galactic center? Phys. Rev. D 62 104012
[26] Vincent F H, Yan W, Straub O, Zdziarski A A and Abramowicz M A 2015 A magnetized torus for modeling Sagittarius A? millimeter images and spectra Astron. Astrophys.574 A48
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.