×

Morphological coevolution for fluid dynamical-related risk mitigation. (English) Zbl 1368.68317

MSC:

68U20 Simulation (MSC2010)
68Q80 Cellular automata (computational aspects)
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
76E20 Stability and instability of geophysical and astrophysical flows
86A60 Geological problems

Software:

CUDA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Maria Vittoria Avolio, Gino Mirocle Crisci, Salvatore Di Gregorio, Rocco Rongo, William Spataro, and Donato D’Ambrosio. 2006. Pyroclastic flows modelling using cellular automata. Computers & Geosciences 32 (2006), 897–911. DOI:http://dx.doi.org/10.1016/j.cageo.2005.10.024
[2] F. Barberi, F. Brondi, M. L. Carapezza, L. Cavarra, and C. Murgia. 2003. Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research 123 (2003), 231–243. DOI:http://dx.doi.org/10.1016/S0377-0273(03)00038-6
[3] F. Barberi, M. L. Carapezza, M. Valenza, and L. Villari. 1993. The control of lava flow during the 1991-1992 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research 56 (1993), 1–34. DOI:http://dx.doi.org/10.1016/0377-0273(93)90048-V
[4] D. Barca, G. M. Crisci, S. Di Gregorio, and F. Nicoletta. 1994. Cellular automata for simulating lava flows: A method and examples of the etnean eruptions. Transport Theory and Statistical Physics 23, 1–3 (1994), 195–232. DOI:http://dx.doi.org/10.1080/00411459408203862
[5] Boris Behncke and Marco Neri. 2003. The July-August 2001 eruption of Mt. Etna (Sicily). Bulletin of Volcanology 65, 7 (2003), 461–476. DOI:http://dx.doi.org/10.1007/s00445-003-0274-1
[6] Peter Bentley. 1999. An introduction to evolutionary design by computers. In Evolutionary Design by Computers, Peter J. Bentley (Ed.). Morgan Kaufman, San Francisco, 1–73.
[7] J. Martin Bland and Douglas G. Altman. 1995. Multiple significance tests: The bonferroni method. BMJ 310, 6973 (1 1995), 170. DOI:http://dx.doi.org/10.1136/bmj.310.6973.170
[8] I. Blecic, A. Cecchini, and G. A. Trunfio. 2013. Cellular automata simulation of urban dynamics through GPGPU. Journal of Supercomputing 65 (2013), 614–629.
[9] Josh Bongard. 2011. Morphological change in machines accelerates the evolution of robust behavior. In Proceedings of the National Academy of Sciences, Vol. 108. 1234–1239. DOI:http://dx.doi.org/10.1073/ pnas.1015390108
[10] Jack Bresenham. 1965. Algorithm for computer control of a digital plotter. IBM Systems Journal 4, 1 (1965), 25–30.
[11] C. Del Negro, A. Cappello, A. Vicari 2011. Retrospective validation of a lava-flow hazard map for Mount Etna volcano. Annals of Geophysics 54/5 (2011), 634–640.
[12] Bastien Chopard. 2012. Cellular automata modeling of physical systems. In Computational Complexity, Robert A. Meyers (Ed.). Springer, New York, 407–433. DOI:http://dx.doi.org/10.1007/ 978-1-4614-1800-9_27
[13] R. Colombrita. 1984. Methodology for the construction of earth barriers to divert lava flows: The Mt. Etna 1983 eruption. Bulletin Volcanologique 47, 4 (1984), 1009–1038. DOI:http://dx.doi.org/10.1007/ BF01952358
[14] Gino M. Crisci, Maria V. Avolio, Boris Behncke, Donato D’Ambrosio, Salvatore Di Gregorio, Valeria Lupiano, Marco Neri, Rocco Rongo, and William Spataro. 2010. Predicting the impact of lava flows at Mount Etna, Italy. Journal of Geophysical Research: Solid Earth 115, B4 (2010), n/a–n/a. DOI:http://dx.doi.org/10.1029/2009JB006431
[15] Gino M. Crisci, Rocco Rongo, Salvatore Di Gregorio, and William Spataro. 2004. The simulation model SCIARA: The 1991 and 2001 lava flows at Mount Etna. Journal of Volcanology and Geothermal Research 132, 23 (2004), 253–267. DOI:http://dx.doi.org/10.1016/S0377-0273(03)00349-4 · Zbl 1113.76417
[16] Donato D’Ambrosio, Giuseppe Filippone, Davide Marocco, Rocco Rongo, and William Spataro. 2013. Efficient application of GPGPU for lava flow hazard mapping. The Journal of Supercomputing 65, 2 (2013), 630–644. DOI:http://dx.doi.org/10.1007/s11227-013-0949-0
[17] Donato D’Ambrosio, Giuseppe Filippone, Rocco Rongo, William Spataro, and Giuseppe A. Trunfio. 2012a. Cellular automata and GPGPU: An application to lava flow modeling. International Journal of Grid and High Performance Computing 4, 3 (July 2012), 30–47. DOI:http://dx.doi.org/10.4018/jghpc.2012070102
[18] Donato D’Ambrosio, Rocco Rongo, William Spataro, and GiuseppeA. Trunfio. 2012b. Optimizing cellular automata through a meta-model assisted memetic algorithm. In Proceedings of Parallel Problem Solving from Nature - PPSN XII. Lecture Notes in Computer Science, Vol. 7492. Springer, Berlin, 317–326. DOI:http://dx.doi.org/10.1007/978-3-642-32964-7_32 · Zbl 06241086
[19] Donato D’Ambrosio, Rocco Rongo, William Spataro, and Giuseppe A. Trunfio. 2012c. Meta-model assisted evolutionary optimization of cellular automata: An application to the SCIARA model. In Proceedings of the 9th International Conference on Parallel Processing and Applied Mathematics - Volume Part II (PPAM’11). Springer-Verlag, Berlin, 533–542. DOI:http://dx.doi.org/10.1007/978-3-642-31500-8_55 · Zbl 06104442
[20] D. D’Ambrosio and W. Spataro. 2007. Parallel evolutionary modelling of geological processes. Journal of Parallel Computing 33, 3 (2007), 186–212. DOI:http://dx.doi.org/10.1016/j.parco.2006.12.003
[21] Donato D’Ambrosio, William Spataro, and Giulio Iovine. 2006. Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: An application to debris flows. Computers & Geosciences 32, 7 (2006), 861–875.
[22] M. A. de Menezes, E. Brigatti, and V. Schwämmle. 2013. Evolving cellular automata for diversity generation and pattern recognition: Deterministic versus random strategy. Journal of Statistical Mechanics: Theory and Experiment 2013, 08 (2013), P08006.
[23] Ciro Del Negro, Luigi Fortuna, Alexis Herault, and Annamaria Vicari. 2008. Simulations of the 2004 lava flow at Etna volcano using the MAGFLOW cellular automata model. Bulletin of Volcanology 70, 7 (2008), 805–812. DOI:http://dx.doi.org/10.1007/s00445-007-0168-8
[24] Salvatore Di Gregorio, Giuseppe Filippone, William Spataro, and Giuseppe A. Trunfio. 2013. Accelerating wildfire susceptibility mapping through GPGPU. Journal of Parallel and Distributed Computinig 73, 8 (2013), 1183–1194. DOI:http://dx.doi.org/10.1016/j.jpdc.2013.03.014 · Zbl 06521888
[25] Salvatore Di Gregorio and Roberto Serra. 1999. An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems 16, 2–3 (1999), 259–271. DOI:http://dx.doi.org/10.1016/S0167-739X(99)00051-5
[26] S. Di Gregorio, R. Serra, and M. Villani. 1999. Applying cellular automata to complex environmental problems: The simulation of the bioremediation of contaminated soils. Theoretical Computer Science 217, 1 (1999), 131–156. DOI:http://dx.doi.org/10.1016/S0304-3975(98)00154-6 · Zbl 0914.68141
[27] C. J. L. Dibben. 2008. Leaving the city for the suburbs—the dominance of “ordinary” decision making over volkanic risk perception in the production of volcanic risk on Mt. Etna, Sicily. Journal of Volcanology and Geothermal Research 172, 7 (2008), 288–299. DOI:http://dx.doi.org/10.1007/s00445-003-0274-1
[28] Ahmed ElSayed, Elif Kongar, SurendraM. Gupta, and Tarek Sobh. 2012. A robotic-driven disassembly sequence generator for end-of-life electronic products. Journal of Intelligent & Robotic Systems 68, 1 (2012), 43–52. DOI:http://dx.doi.org/10.1007/s10846-012-9667-8 · Zbl 06106655
[29] M. Favalli, S. Tarquini, and A. Fornaciai. 2011. DOWNFLOW code and LIDAR technology for lava flow analysis and hazard assessment at Mount Etna. Annals of Geophysics 5/54 (2011).
[30] E. Fujita, M. Hidaka, A. Goto, and S. Umino. 2009. Simulations of measures to control lava flows. Bulletin of Volcanology 71 (2009), 401–408. DOI:http://dx.doi.org/10.1007/s00445-008-0229-7
[31] Jose Fernando Gonçalves and Mauricio G. C. Resende. 2011. Biased random-key genetic algorithms forcombinatorial optimization. Journal of Heuristics 17, 5 (2011), 487–525. DOI:http://dx.doi.org/10.1007/ s10732-010-9143-1
[32] P. J. B. Hancock. 1992. Genetic algorithms and permutation problems: A comparison of recombination operators for neural net structure specification. In Proceedings of the 1992 International Workshop on Combinations of Genetic Algorithms and Neural Networks (COGANN’92). 108–122. DOI:10.1109/COGANN.1992.273944
[33] Geoffrey E. Hinton and Steven J. Nowlan. 1987. How learning can guide evolution. Complex Systems 1, 3 (1987), 495–502. · Zbl 0651.92015
[34] John H. Holland. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press.
[35] G. Iovine, D. D’Ambrosio, and S. Di Gregorio. 2005. Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology 66, 14 (2005), 287–303. DOI:http://dx.doi.org/10.1016/j.geomorph.2004.09.017
[36] K. Ishihara, M. Iguchi, and K. Kamo. 1990. Numerical simulation of lava flows on some volcanoes in Japan. In Lava Flows and Domes, Jonathan H. Fink (Ed.). IAVCEI Proceedings in Volcanology, Vol. 2. Springer, Berlin, 174–207. DOI:http://dx.doi.org/10.1007/978-3-642-74379-5_8
[37] Bijayalaxmi Kar, D. Chandrasekhra Rao, and Amiya Kumar Rath. 2011. Generating PNS for secret key cryptography using cellular automaton. International Journal of Advanced Computer Science and Applications 2, 5 (2011), 101–105.
[38] Rafal Kicinger, Tomasz Arciszewski, and Kenneth De De Jong. 2005. Evolutionary computation and structural design: A survey of the state-of-the-art. Computers & Structures 83, 23–24 (2005), 1943–1978. DOI:http://dx.doi.org/10.1016/j.compstruc.2005.03.002
[39] LemontB. Kier and PaulG. Seybold. 2009. Cellular automata modeling of complex biochemical systems. In Encyclopedia of Complexity and Systems Science, Robert A. Meyers (Ed.). Springer, New York, 848–865. DOI:http://dx.doi.org/10.1007/978-0-387-30440-3_56
[40] William H. Kruskal and W. Allen Wallis. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47, 260 (1952), 583–621. DOI:http://dx.doi.org/10.2307/2280779 · Zbl 0048.11703
[41] Hod Lipson and Jordan B. Pollack. 2000. Automatic design and manufacture of artificial life forms. Nature 406 (2000), 974–978.
[42] Federica Lucá, Donato D’Ambrosio, Gaetano Robustelli, Rocco Rongo, and William Spataro. 2014. Integrating geomorphology, statistic and numerical simulations for landslide invasion hazard scenarios mapping: An example in the Sorrento Peninsula (Italy). Computers & Geosciences (2014).
[43] Gordon A. MacDonald. 1962. The 1959 and 1960 eruptions of Kilauea volcano, Hawaii, and the construction of walls to restrict the spread of the lava flows. Bulletin Volcanologique 24, 1 (1962), 249–294. DOI:http://dx.doi.org/10.1007/BF02599351
[44] P. Maji, N. Ganguly, S. Saha, A. Roy, and P. Pal Chaudhuri. 2002. Cellular automata machine for pattern recognition. In Cellular Automata, Stefania Bandini, Bastien Chopard, and Marco Tomassini (Eds.). Lecture Notes in Computer Science, Vol. 2493. Springer, Berlin, 270–281. DOI:http://dx.doi.org/10.1007/ 3-540-45830-1_26 · Zbl 1027.68689
[45] Hideaki Miyamoto and Sho Sasaki. 1997. Simulating lava flows by an improved cellular automata method. Computers & Geosciences 23, 3 (1997), 283–292. DOI:http://dx.doi.org/10.1016/S0098-3004(96)00089-1
[46] Stefano Nolfi and Davide Marocco. 2001. Evolving robots able to integrate sensory-motor information over time. Theory in Biosciences 120 (2001), 287–310. DOI:http://dx.doi.org/10.1007/s12064-001-0024-x
[47] Anna Piwonska, Franciszek Seredynski, and Miroslaw Szaban. 2013. Learning cellular automata rules for binary classification problem. The Journal of Supercomputing 63, 3 (2013), 800–815. DOI:http://dx.doi.org/ 10.1007/s11227-012-0767-9
[48] G. C. Sirakoulis and P. Progias, 2013. An FPGA processor for modelling wildfire spreading. Mathematical and Computer Modelling 57/5-6 (2013), 1436–1452.
[49] Adams NA Riegel E, Indinger T. 2009. Implementation of a lattice-boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology. Computer Science Research and Development 23 (2009), 241–247. · Zbl 05661104
[50] R. Rongo, M. V. Avolio, B. Behncke, D. D’Ambrosio, S. Di Gregorio, V. Lupiano, M. Neri, W. Spataro, and G. M. Crisci. 2011. Defining high detailed hazard maps by a cellular automata approach: Application to Mt. Etna (Italy). Annals of Geophysics 54, 5 (2011), 568–578.
[51] Rocco Rongo, William Spataro, Donato D’Ambrosio, Maria Vittoria Avolio, Giuseppe A. Trunfio, and Salvatore Di Gregorio. 2008. Lava flow hazard evaluation through cellular automata and genetic algorithms: An application to Mt Etna volcano. Fundamenta Informaticae 87 (2008), 247–267. · Zbl 1160.68449
[52] P. L. Rosin. 2005. Training cellular automata for image processing. In Image Analysis, Heikki Kalviainen, Jussi Parkkinen, and Arto Kaarna (Eds.). Lecture Notes in Computer Science, Vol. 3540. Springer, Berlin, 195–204. DOI:http://dx.doi.org/10.1007/11499145_22
[53] P. L. Rosin. 2010. Image processing using 3-state cellular automata. Computer Vision and Image Understanding 114, 7 (2010), 790–802. DOI:http://dx.doi.org/10.1016/j.cviu.2010.02.005 · Zbl 06019099
[54] P. H. T. Schimit. 2014. On exploring the genetic algorithm for modeling the evolution of cooperation in a population. Communications in Nonlinear Science and Numerical Simulation 19/8 (2014), 2801–2810.
[55] Franciszek Seredynski, Pascal Bouvry, and Albert Y. Zomaya. 2004. Cellular automata computations and secret key cryptography. Parallel Computing 30, 5 (2004), 753–766. DOI:http://dx.doi.org/10.1016/ j.parco.2003.12.014 · Zbl 1038.68865
[56] Karl Sims. 1994. Evolving 3D morphology and behavior by competition. In Proceedings of Artificial Life IV. MIT Press, 28–39.
[57] William Spataro, Maria V. Avolio, Valeria Lupiano, Giuseppe A. Trunfio, Rocco Rongo, and Donato DAmbrosio. 2010. The latest release of the lava flows simulation model SCIARA: First application to Mt Etna (Italy) and solution of the anisotropic flow direction problem on an ideal surface. Procedia Computer Science 1, 1 (2010), 17–26.
[58] William Spataro, Donato D’Ambrosio, Rocco Rongo, and Giuseppe A. Trunfio. 2004. An evolutionary approach for modelling lava flows through cellular automata. In ACRI 2004. Lecture Notes in Computer Science, Vol. 3305. Springer, Berlin, 725–734. DOI:http://dx.doi.org/10.1007/978-3-540-30479-1_75 · Zbl 1116.86306
[59] Marco Tomassini and Mathieu Perrenoud. 2001. Cryptography with cellular automata. Applied Soft Computing 1, 2 (2001), 151–160. DOI:http://dx.doi.org/10.1016/S1568-4946(01)00015-1 · Zbl 05391453
[60] Marco Tomassini and Mattias Venzi. 2002. Artificially evolved asynchronous cellular automata for the density task. In Procedings of the 5th International Conference on Cellular Automata for Research and Industry. Lecture Notes in Computer Science, Vol. 2493. Springer, Berlin, 44–55. DOI:http://dx.doi.org/10.1007/ 3-540-45830-1_5 · Zbl 1027.68640
[61] Giuseppe A. Trunfio, Donato D’Ambrosio, Rocco Rongo, William Spataro, and Salvatore Di Gregorio. 2011. A new algorithm for simulating wildfire spread through cellular automata. ACM Transactions on Modeling and Computer Simulation (TOMACS) 22, 1, Article 6 (2011), 26 pages. DOI:http://dx.doi.org/10.1145/ 2043635.2043641
[62] John Von Neumann. 1966. Theory of Self-Reproducing Automata. University of Illinois Press, Champaign, IL.
[63] Fan Y. Ying S. J. 2013. Genetic cellular automata model of evolving stock market. Complex Systems and Complexity Science 10/1 (2013), 26–37.
[64] Wangda Zuo and Qingyan Chen. 2010. Fast and informative flow simulations in a building by using fast fluid dynamics model on graphics processing unit. Building and Environment 45, 5–6 (2010), 747–757.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.