×

Spritz: general relativistic magnetohydrodynamics with neutrinos. (English) Zbl 1481.85002

Summary: We here present a new version of the publicly available general relativistic magnetohydrodynamic (GRMHD) code Spritz, which now includes an approximate neutrino leakage scheme able to handle neutrino cooling and heating. The leakage scheme is based on the publicly available ZelmaniLeak code, with a few modifications in order to properly work with Spritz. We discuss the involved equations, physical assumptions, and implemented numerical methods, along with a large battery of general relativistic tests performed with and without magnetic fields. Our tests demonstrate the correct implementation of the neutrino leakage scheme, paving the way for further improvements of our neutrino treatment and the first application to magnetized binary neutron star mergers. We also discuss the implementation in the Spritz code of high-order methods for a more accurate evolution of hydrodynamical quantities.

MSC:

85A15 Galactic and stellar structure
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76W05 Magnetohydrodynamics and electrohydrodynamics
76E20 Stability and instability of geophysical and astrophysical flows
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abbott, B. P., GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.161101
[2] Abbott, B. P., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. Lett., 848, L13 (2017) · doi:10.3847/2041-8213/aa920c
[3] Abbott, B. P., Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett., 848, L12 (2017) · doi:10.3847/2041-8213/aa91c9
[4] Troja, E., The x-ray counterpart to the gravitational-wave event GW170817, Nature, 551, 71-74 (2017) · doi:10.1038/nature24290
[5] Margutti, R., The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising a-ray emission from an off-axis jet, Astrophys. J. Lett., 848, L20 (2017) · doi:10.3847/2041-8213/aa9057
[6] Hallinan, G., A radio counterpart to a neutron star merger, Science, 358, 1579-1583 (2017) · doi:10.1126/science.aap9855
[7] Alexander, K. D., The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta, Astrophys. J. Lett., 848, L21 (2017) · doi:10.3847/2041-8213/aa905d
[8] Mooley, K. P., A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817, Nature, 554, 207-210 (2018) · doi:10.1038/nature25452
[9] Lazzati, D.; Perna, R.; Morsony, B. J.; Lopez-Camara, D.; Cantiello, M.; Ciolfi, R.; Giacomazzo, B.; Workman, J. C., Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817, Phys. Rev. Lett., 120 (2018) · doi:10.1103/physrevlett.120.241103
[10] Lyman, J. D., The optical afterglow of the short gamma-ray burst associated with GW170817, Nat. Astron., 2, 751-754 (2018) · doi:10.1038/s41550-018-0511-3
[11] Mooley, K. P., Superluminal motion of a relativistic jet in the neutron-star merger GW170817, Nature, 561, 355-359 (2018) · doi:10.1038/s41586-018-0486-3
[12] Ghirlanda, G., Compact radio emission indicates a structured jet was produced by a binary neutron star merger, Science, 363, 968-971 (2019) · doi:10.1126/science.aau8815
[13] Kasen, D.; Metzger, B.; Barnes, J.; Quataert, E.; Ramirez-Ruiz, E., Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event, Nature, 551, 80-84 (2017) · doi:10.1038/nature24453
[14] Pian, E., Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger, Nature, 551, 67-70 (2017) · doi:10.1038/nature24298
[15] Smartt, S. J., A kilonova as the electromagnetic counterpart to a gravitational-wave source, Nature, 551, 75-79 (2017) · doi:10.1038/nature24303
[16] Foucart, F.; O’Connor, E.; Roberts, L.; Kidder, L. E.; Pfeiffer, H. P.; Scheel, M. A., Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations, Phys. Rev. D, 94 (2016) · doi:10.1103/physrevd.94.123016
[17] Radice, D.; Perego, A.; Hotokezaka, K.; Fromm, S. A.; Bernuzzi, S.; Roberts, L. F., Binary neutron star mergers: mass ejection, electromagnetic counterparts, and nucleosynthesis, Astrophys. J., 869, 130 (2018) · doi:10.3847/1538-4357/aaf054
[18] Ciolfi, R., The key role of magnetic fields in binary neutron star mergers, Gen. Relativ. Gravit., 52, 59 (2020) · Zbl 1445.85001 · doi:10.1007/s10714-020-02714-x
[19] Ciolfi, R.; Kalinani, J. V., Magnetically driven baryon winds from binary neutron star merger remnants and the blue kilonova of 2017 August, Astrophys. J. Lett., 900, L35 (2020) · doi:10.3847/2041-8213/abb240
[20] Just, O.; Obergaulinger, M.; Janka, H-T; Bauswein, A.; Schwarz, N., Neutron-star merger ejecta as obstacles to neutrino-powered jets of gamma-ray bursts, Astrophys. J., 816, L30 (2016) · doi:10.3847/2041-8205/816/2/l30
[21] Perego, A.; Yasin, H.; Arcones, A., Neutrino pair annihilation above merger remnants: implications of a long-lived massive neutron star, J. Phys. G: Nucl. Part. Phys., 44 (2017) · doi:10.1088/1361-6471/aa7bdc
[22] Ruiz, M.; Lang, R. N.; Paschalidis, V.; Shapiro, S. L., Binary neutron star mergers: a jet engine for short gamma-ray bursts, Astrophys. J. Lett., 824, L6 (2016) · doi:10.3847/2041-8205/824/1/l6
[23] Ciolfi, R., Collimated outflows from long-lived binary neutron star merger remnants, Mon. Not. R. Astron. Soc. Lett., 495, L66-L70 (2020) · doi:10.1093/mnrasl/slaa062
[24] Mösta, P.; Radice, D.; Haas, R.; Schnetter, E.; Bernuzzi, S., A magnetar engine for short GRBs and kilonovae, Astrophys. J. Lett., 901, L37 (2020) · doi:10.3847/2041-8213/abb6ef
[25] Palenzuela, C.; Liebling, S. L.; Neilsen, D.; Lehner, L.; Caballero, O. L.; O’Connor, E.; Anderson, M., Effects of the microphysical equation of state in the mergers of magnetized neutron stars with neutrino cooling, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.044045
[26] Most, E. R.; Papenfort, L. J.; Rezzolla, L., Beyond second-order convergence in simulations of magnetized binary neutron stars with realistic microphysics, Mon. Not. R. Astron. Soc., 490, 3588-3600 (2019) · doi:10.1093/mnras/stz2809
[27] Cipolletta, F.; Kalinani, J. V.; Giacomazzo, B.; Ciolfi, R., Spritz: a new fully general-relativistic magnetohydrodynamic code, Class. Quantum Grav., 37 (2020) · Zbl 1478.85008 · doi:10.1088/1361-6382/ab8be8
[28] The spritz code · doi:10.5281/zenodo.3689751
[29] Frank, L., The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics, Class. Quantum Grav., 29 (2012) · Zbl 1247.83003 · doi:10.1088/0264-9381/29/11/115001
[30] Zilhão, M.; Löffler, F., An introduction to the Einstein Toolkit, Int. J. Mod. Phys. A, 28, 1340014 (2013) · doi:10.1142/s0217751x13400149
[31] Einstein Toolkit · Zbl 1051.83540
[32] Stellar collapse · Zbl 0026.04803
[33] Foucart, F.; Duez, M. D.; Hebert, F.; Kidder, L. E.; Pfeiffer, H. P.; Scheel, M. A., Monte-Carlo neutrino transport in neutron star merger simulations, Astrophys. J. Lett., 902, L27 (2020) · doi:10.3847/2041-8213/abbb87
[34] Radice, D.; Rezzolla, L.; Galeazzi, F., Beyond second-order convergence in simulations of binary neutron stars in full general relativity, Mon. Not. R. Astron. Soc., 437, L46-L50 (2014) · doi:10.1093/mnrasl/slt137
[35] Bernuzzi, S.; Dietrich, T., Gravitational waveforms from binary neutron star mergers with high-order weighted-essentially-nonoscillatory schemes in numerical relativity, Phys. Rev. D, 94 (2016) · doi:10.1103/physrevd.94.064062
[36] Aguilera-Miret, R.; Viganò, D.; Carrasco, F.; Miñano, B.; Palenzuela, C., Turbulent magnetic-field amplification in the first 10 milliseconds after a binary neutron star merger: comparing high-resolution and large-eddy simulations, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.103006
[37] Compose · JFM 45.1247.08
[38] Lattimer, J. M.; Douglas Swesty, F., A generalized equation of state for hot, dense matter, Nucl. Phys. A, 535, 331-376 (1991) · doi:10.1016/0375-9474(91)90452-c
[39] Radice, D.; Perego, A.; Bernuzzi, S.; Zhang, B., Long-lived remnants from binary neutron star mergers, Mon. Not. R. Astron. Soc., 481, 3670-3682 (2018) · doi:10.1093/mnras/sty2531
[40] Bernuzzi, S., Neutron star merger remnants, Gen. Relativ. Gravit., 52, 108 (2020) · Zbl 1465.83012 · doi:10.1007/s10714-020-02752-5
[41] Sekiguchi, Y., Stellar core collapse in full general relativity with microphysics:—formulation and spherical collapse test, Prog. Theor. Phys., 124, 331-379 (2010) · Zbl 1204.85005 · doi:10.1143/ptp.124.331
[42] Gallo Rosso, A.; Mascaretti, C.; Palladino, A.; Vissani, F., Introduction to neutrino astronomy, Eur. Phys. J. Plus, 133, 267 (2018) · doi:10.1140/epjp/i2018-12143-6
[43] Ruffert, M.; Janka, H-T; Takahashi, K.; Schäfer, G., Coalescing neutron stars—a step towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts, Astron. Astrophys., 319, 122 (1997)
[44] O’Connor, E.; Ott, C. D., A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes, Class. Quantum Grav., 27 (2010) · Zbl 1190.83064 · doi:10.1088/0264-9381/27/11/114103
[45] Deaton, M. B.; Duez, M. D.; Foucart, F.; O’Connor, E.; Ott, C. D.; Kidder, L. E.; Muhlberger, C. D.; Scheel, M. A.; Szilagyi, B., Black hole-neutron star mergers with a hot nuclear equation of state: outflow and neutrino-cooled disk for a low-mass, high-spin case, Astrophys. J., 776, 47 (2013) · doi:10.1088/0004-637x/776/1/47
[46] Foucart, F., Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: dependence in the binary parameters, Phys. Rev. D, 90 (2014) · doi:10.1103/physrevd.90.024026
[47] Radice, D.; Galeazzi, F.; Lippuner, J.; Roberts, L. F.; Ott, C. D.; Rezzolla, L., Dynamical mass ejection from binary neutron star mergers, Mon. Not. R. Astron. Soc., 460, 3255-3271 (2016) · doi:10.1093/mnras/stw1227
[48] Ott, C. D.; Abdikamalov, E.; Mösta, P.; Haas, R.; Drasco, S.; O’Connor, E. P.; Reisswig, C.; Meakin, C. A.; Schnetter, E., General-relativistic simulations of three-dimensional core-collapse supernovae, Astrophys. J., 768, 115 (2013) · doi:10.1088/0004-637x/768/2/115
[49] Rosswog, S.; Liebendörfer, M., High-resolution calculations of merging neutron stars—II. Neutrino emission, Mon. Not. R. Astron. Soc., 342, 673-689 (2003) · doi:10.1046/j.1365-8711.2003.06579.x
[50] Takahashi, K.; El Eid, M. F.; Hillebrandt, W., Beta transition rates in hot and dense matter, Astron. Astrophys., 67, 185-197 (1978)
[51] Ruffert, M.; Janka, H-T; Schaefer, G., Coalescing neutron stars-a step towards physical models. I. Hydrodynamic evolution and gravitational-wave emission, Astron. Astrophys., 311, 532-566 (1996)
[52] Galeazzi, F.; Kastaun, W.; Rezzolla, L.; Font, J. A., Implementation of a simplified approach to radiative transfer in general relativity, Phys. Rev. D, 88 (2013) · doi:10.1103/physrevd.88.064009
[53] Etk turing release
[54] Lorene
[55] Brent, R. P., Algorithms for Minimization without Derivatives, p 206 (2013), Mineola, NY: Dover, Mineola, NY
[56] Siegel, D. M.; Mösta, P.; Desai, D.; Wu, S., Recovery schemes for primitive variables in general-relativistic magnetohydrodynamics, Astrophys. J., 859, 71 (2018) · doi:10.3847/1538-4357/aabcc5
[57] Kastaun, W.; Ciolfi, R.; Giacomazzo, B., Structure of stable binary neutron star merger remnants: a case study, Phys. Rev. D, 94 (2016) · doi:10.1103/physrevd.94.044060
[58] Kastaun, W.; Ciolfi, R.; Endrizzi, A.; Giacomazzo, B., Structure of stable binary neutron star merger remnants: role of initial spin, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.043019
[59] Martin, D.; Perego, A.; Kastaun, W.; Arcones, A., The role of weak interactions in dynamic ejecta from binary neutron star mergers, Class. Quantum Grav., 35 (2018) · doi:10.1088/1361-6382/aa9f5a
[60] Giacomazzo, B.; Rezzolla, L., Whiskymhd: a new numerical code for general relativistic magnetohydrodynamics, Class. Quantum Grav., 24, S235 (2007) · Zbl 1117.83002 · doi:10.1088/0264-9381/24/12/s16
[61] Lattimer, J. M.; Douglas Swesty, F., A generalized equation of state for hot, dense matter, Nucl. Phys. A, 535, 331-376 (1991) · doi:10.1016/0375-9474(91)90452-c
[62] Giacomazzo, B.; Rezzolla, L.; Baiotti, L., Accurate evolutions of inspiralling and magnetized neutron stars: equal-mass binaries, Phys. Rev. D, 83 (2011) · doi:10.1103/physrevd.83.044014
[63] Bocquet, M.; Bonazzola, S.; Gourgoulhon, E.; Novak, J., Rotating neutron star models with magnetic field, Astron. Astrophys., 301, 757 (1995)
[64] Giacomazzo, B.; Zrake, J.; Duffell, P. C.; MacFadyen, A. I.; Perna, R., Producing magnetar magnetic fields in the merger of binary neutron stars, Astrophys. J., 809, 39 (2015) · doi:10.1088/0004-637x/809/1/39
[65] Ott, C. D.; Abdikamalov, E.; O’Connor, E.; Reisswig, C.; Haas, R.; Kalmus, P.; Drasco, S.; Burrows, A.; Schnetter, E., Correlated gravitational wave and neutrino signals from general-relativistic rapidly rotating iron core collapse, Phys. Rev. D, 86 (2012) · doi:10.1103/physrevd.86.024026
[66] Neilsen, D.; Liebling, S. L.; Anderson, M.; Lehner, L.; O’Connor, E.; Palenzuela, C., Magnetized neutron stars with realistic equations of state and neutrino cooling, Phys. Rev. D, 89 (2014) · doi:10.1103/physrevd.89.104029
[67] Shibata, M.; Nagakura, H.; Sekiguchi, Y.; Yamada, S., Conservative form of Boltzmann’s equation in general relativity, Phys. Rev. D, 89 (2014) · doi:10.1103/physrevd.89.084073
[68] Borges, R.; Carmona, M.; Costa, B.; Sun Don, W., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 3191-3211 (2008) · Zbl 1136.65076 · doi:10.1016/j.jcp.2007.11.038
[69] Del Zanna, L.; Zanotti, O.; Bucciantini, N.; Londrillo, P., ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics, Astron. Astrophys., 473, 11-30 (2007) · doi:10.1051/0004-6361:20077093
[70] Liang, E. P T., Relativistic simple waves—shock damping and entropy production, Astrophys. J., 211, 361-376 (1977) · doi:10.1086/154942
[71] Anile, A. M., Relativistic Fluids and Magneto-Fluids (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 1106.76003 · doi:10.1017/CBO9780511564130
[72] Font, J. A.; Goodale, T.; Iyer, S.; Miller, M.; Rezzolla, L.; Seidel, E.; Stergioulas, N.; Suen, W-M; Tobias, M., Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars, Phys. Rev. D, 65 (2002) · doi:10.1103/physrevd.65.084024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.