×

Cosmic bulk viscosity through backreaction. (English) Zbl 1338.83187

Summary: We consider an effective viscous pressure as the result of a backreaction of inhomogeneities within Buchert’s formalism. The use of an effective metric with a time-dependent curvature radius allows us to calculate the luminosity distance of the backreaction model. This quantity is different from its counterpart for a “conventional” spatially flat bulk viscous fluid universe. Both expressions are tested against the SNIa data of the Union2.1 sample with only marginally different results for the distance-redshift relation and in accordance with the \(\Lambda\)CDM model. Future observations are expected to be able to discriminate among these models on the basis of indirect measurements of the curvature evolution.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76E20 Stability and instability of geophysical and astrophysical flows
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Buchert, T., Coley, A.A., Kleinert, H., Roukema, B.F., Wiltshire, D.L.: Observational challenges for the standard FLRW model. Int. J. Mod. Phys. D 25, 1630007 (2016). arXiv:1512.03313
[2] Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). arXiv:hep-th/0603057 · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[3] Joyce, A., Jain, B., Khoury, J., Trodden, M.: Beyond the cosmological standard model. Phys. Rep. 568, 1-98 (2015). arXiv:1407.0059 · doi:10.1016/j.physrep.2014.12.002
[4] Ellis, G.F.R., Stoeger, W.: The ‘fitting problem’ in cosmology. Class. Quantum Gravity 4, 1697 (1987) · Zbl 0626.53071 · doi:10.1088/0264-9381/4/6/025
[5] Zalaletdinov, R.M.: Averaging out the Einstein equations. Gen. Relativ. Gravit. 24, 1015 (1992) · doi:10.1007/BF00756944
[6] Zalaletdinov, R.M.: Towards a theory of macroscopic gravity. Gen. Relativ. Gravit. 25, 673 (1993) · Zbl 0854.53067 · doi:10.1007/BF00756937
[7] Buchert, T.: On average properties of inhomogeneous fluids in general relativity: 1. Dust cosmologies. Gen. Rel. Gravit. 32, 105 (2000) [gr-qc/9906015] · Zbl 0976.83073
[8] Sussman, R.: On Spatial Volume Averaging in Lemaître-Tolman-Bondi Dust Models. Part I: Back Reaction, Spacial Curvature and Binding Energy. arXiv:0807.1145 · Zbl 1306.83006
[9] Sussman, R.: Backreaction and Effective Acceleration in Generic LTB Dust Models. Class. Quantum Gravity 28, 235002 (2011). arXiv:1102.2663 · Zbl 1231.83036
[10] Korzyński, M.: Covariant coarse graining of inhomogeneous dust flow in general relativity. Class. Quantum Gravity 27, 105015 (2010) · Zbl 1190.83032 · doi:10.1088/0264-9381/27/10/105015
[11] Skarke, H.: Inhomogeneity implies accelerated expansion. Phys. Rev. D 89, 043506 (2014). arXiv:1310.1028 · doi:10.1103/PhysRevD.89.043506
[12] Buchert, T.: Dark Energy from structure: a status report. Gen. Relativ. Gravit. 40, 467 (2008). arXiv:0707.2153 · Zbl 1137.83375 · doi:10.1007/s10714-007-0554-8
[13] Ellis, G.F.R.: Inhomogeneity effects in cosmology. Class. Quantum Gravity 28, 164001 (2011) · Zbl 1225.83092 · doi:10.1088/0264-9381/28/16/164001
[14] Wiltshire, D.L.: What is dust? Physical foundations of the averaging problem in cosmology. Class. Quantum Gravity 28, 164006 (2011) · Zbl 1225.83111 · doi:10.1088/0264-9381/28/16/164006
[15] Buchert, T.: Toward physical cosmology: focus on inhomogeneous geometry and its non-perturbative effects. Class. Quantum Gravity 28, 164007 (2011) · Zbl 1225.83087 · doi:10.1088/0264-9381/28/16/164007
[16] Räsänen, S.: Backreaction: directions of progress. Class. Quantum Gravity 28, 164008 (2011) · Zbl 1225.83104 · doi:10.1088/0264-9381/28/16/164008
[17] Kolb, E.W.: Backreaction of inhomogeneities can mimic dark energy. Class. Quantum Gravity 28, 164009 (2011) · Zbl 1225.83097 · doi:10.1088/0264-9381/28/16/164009
[18] Paranjape, A., Singh, T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaître Tolman Bondi models. Class. Quantum Gravity 23, 69556969 (2006). arXiv:astro-ph/0605195 · Zbl 1123.83019 · doi:10.1088/0264-9381/23/23/022
[19] Larena, J., Alimi, J.-M., Buchert, T., Kunz, M., Corasaniti, P.-S.: Testing backreaction effects with observations. Phys. Rev. D 79, 083011 (2009). arXiv:0808.1161 [astro-ph] · doi:10.1103/PhysRevD.79.083011
[20] Buchert, T., Larena, J., Alimi, J.-M.: Correspondence between kinematical backreaction and scalar field cosmologies: the ‘Morphon field’. Class. Quantum Gravity textbf23, 6379 (2006) [gr-qc/0606020] · Zbl 1117.83118
[21] Roy, X., Buchert, T.: Chaplygin gas and effective description of inhomogeneous universe models in general relativity. Class. Quantum Gravity 27, 175013 (2010). arXiv:0909.4155 · Zbl 1201.83058 · doi:10.1088/0264-9381/27/17/175013
[22] Green, S.R., Wald, R.M.: How well is our universe described by an FLRW model? Class. Quantum Gravity 31, 234003 (2014) · Zbl 1306.83006 · doi:10.1088/0264-9381/31/23/234003
[23] Buchert, T., Carfora, M., Ellis, G.F.R., Kolb, E.W., MacCallum, M.A.H., Ostrowski, J.J., Räsänen, S., Roukema, B.F., Andersson, L., Coley, A.A., Wiltshire, D.L.: Is there proof that backreaction of inhomogeneities is irrelevant in cosmology? Class. Quantum Gravity 32, 215021 (2015) · Zbl 1329.83208 · doi:10.1088/0264-9381/32/21/215021
[24] Räsänen, S.: Light propagation in statistically homogeneous and isotropic dust universes. J. Cosmol. Astropart. Phys. 0902, 011 (2009) · doi:10.1088/1475-7516/2009/02/011
[25] Räsänen, S.: Light propagation in statistically homogeneous and isotropic universes with general matter content. J. Cosmol. Astropart. Phys. 1003, 018 (2010) · doi:10.1088/1475-7516/2010/03/018
[26] Bagheri, S., Schwarz, D.J.: Light propagation in the averaged universe. J. Cosmol. Astropart. Phys. 1410, 073 (2014) · doi:10.1088/1475-7516/2014/10/073
[27] Fabris, J.C., Gonçalves, S.V.B., de Sá Ribeiro, R.: Bulk viscosity driving the acceleration of the Universe. Gen. Relativ. Gravit. 38, 495 (2006) · Zbl 1093.83050 · doi:10.1007/s10714-006-0236-y
[28] Szydłowski, M., Hrycyna, O.: Dissipative or conservative cosmology with dark energy? Ann. Phys. 322, 2745 (2007) · Zbl 1148.83350 · doi:10.1016/j.aop.2007.06.008
[29] Colistete Jr., R., Fabris, J.C., Tossa, J., Zimdahl, W.: Bulk viscous cosmology. Phys. Rev. D 76, 103516 (2007) · doi:10.1103/PhysRevD.76.103516
[30] Avelino, A., Nucamendi, U.: Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe? J. Cosmol. Astropart. Phys. 0904, 006 (2009) · doi:10.1088/1475-7516/2009/04/006
[31] Li, B., Barrow, J.D.: Does bulk viscosity create a viable unified dark matter model? Phys. Rev. D 79, 103521 (2009) · doi:10.1103/PhysRevD.79.103521
[32] Avelino, A., Nucamendi, U.: Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the universe. J. Cosmol. Astropart. Phys. 1008, 006 (2010)
[33] Hipólito-Ricaldi, W.S., Velten, H.E.S., Zimdahl, W.: Non-adiabatic dark fluid cosmology. J. Cosmol. Astropart. Phys. 06, 016 (2009) · doi:10.1088/1475-7516/2009/06/016
[34] Hipólito-Ricaldi, W.S., Velten, H.E.S., Zimdahl, W.: Viscous dark fluid universe. Phys. Rev. D 82, 063507 (2010) · doi:10.1103/PhysRevD.82.063507
[35] Piattella, O.F., Fabris, J.C., Zimdahl, W.: Bulk viscous cosmology with causal transport theory. J. Cosmol. Astropart. Phys. 1105, 029 (2011) · doi:10.1088/1475-7516/2011/05/029
[36] Padmanabhan, T., Chitre, S.M.: Viscous universes. Phys. Lett. A 120, 433 (1987) · doi:10.1016/0375-9601(87)90104-6
[37] Zimdahl, W., Schwarz, D.J., Balakin, A.B., Pavón, D.: Cosmic anti-friction and accelerated expansion. Phys. Rev. D 64, 063501 (2001) · doi:10.1103/PhysRevD.64.063501
[38] Balakin, A.B., Pavón, D., Schwarz, D.J., Zimdahl, W.: Curvature force and dark energy. N. J. Phys. 5, 85 (2003) · doi:10.1088/1367-2630/5/1/385
[39] Roukema, B.F., Ostrowski, J.J., Buchert, T.: Virialisation-induced curvature as a physical explanation for dark energy. J. Cosmol. Astropart. Phys. 1310, 043 (2013). arXiv:1303.4444 · doi:10.1088/1475-7516/2013/10/043
[40] Suzuki, N.; etal., No article title, Astrophys. J., 746, 85 (2012) · doi:10.1088/0004-637X/746/1/85
[41] Clarkson, C., Bassett, B., Lu, T.H.C.: A general test of the Copernican principle. Phys. Rev. Lett. 101, 011301 (2008). arXiv:0712.3457 · doi:10.1103/PhysRevLett.101.011301
[42] Euclid homepage http://sci.esa.int/euclid/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.