×

Ultralight bosons for strong gravity applications from simple standard model extensions. (English) Zbl 1487.85015


MSC:

85A15 Galactic and stellar structure
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76E20 Stability and instability of geophysical and astrophysical flows
81V73 Bosonic systems in quantum theory
81V22 Unified quantum theories
83C57 Black holes
70F15 Celestial mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Conrad, Jan; Reimer, Olaf, Indirect dark matter searches in gamma and cosmic rays, Nature Phys., 13, 224-231 (2017) · doi:10.1038/nphys4049
[2] Billard, Julien, Direct Detection of Dark Matter - APPEC Committee Report (2021)
[3] Li, Bohua; Rindler-Daller, Tanja; Shapiro, Paul R., Cosmological Constraints on Bose-Einstein-Condensed Scalar Field Dark Matter, Phys. Rev. D, 89 (2014) · Zbl 1284.82005 · doi:10.1103/PhysRevD.89.083536
[4] Suárez, Abril; Robles, Victor H.; Matos, Tonatiuh; Moreno González, Claudia; Madriz Aguilar, José Edgar; Reyes Barrera, Luz Marina, A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model, Astrophys. Space Sci. Proc., 38, 107-142 (2014) · doi:10.1007/978-3-319-02063-1_9
[5] Hui, Lam; Ostriker, Jeremiah P.; Tremaine, Scott; Witten, Edward, Ultralight scalars as cosmological dark matter, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.043541
[6] Arvanitaki, Asimina; Dubovsky, Sergei, Exploring the String Axiverse with Precision Black Hole Physics, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.044026
[7] Arvanitaki, Asimina; Dimopoulos, Savas; Dubovsky, Sergei; Kaloper, Nemanja; March-Russell, John, String Axiverse, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.123530
[8] Kaup, David J., Klein-Gordon Geon, Phys. Rev., 172, 1331-1342 (1968) · doi:10.1103/PhysRev.172.1331
[9] Ruffini, Remo; Bonazzola, Silvano, Systems of selfgravitating particles in general relativity and the concept of an equation of state, Phys. Rev., 187, 1767-1783 (1969) · doi:10.1103/PhysRev.187.1767
[10] Schunck, Franz E.; Mielke, Eckehard W., General relativistic boson stars, Class. Quant. Grav., 20, R301-R356 (2003) · Zbl 1050.83002 · doi:10.1088/0264-9381/20/20/201
[11] Liebling, Steven L.; Palenzuela, Carlos, Dynamical Boson Stars, Living Rev. Rel., 15, 6 (2012) · Zbl 1320.83006 · doi:10.12942/lrr-2012-6
[12] Brito, Richard; Cardoso, Vitor; Herdeiro, Carlos A. R.; Radu, Eugen, Proca stars: Gravitating Bose-Einstein condensates of massive spin 1 particles, Phys. Lett. B, 752, 291-295 (2016) · doi:10.1016/j.physletb.2015.11.051
[13] Herdeiro, Carlos A. R.; Pombo, Alexandre M.; Radu, Eugen, Asymptotically flat scalar, Dirac and Proca stars: discrete vs. continuous families of solutions, Phys. Lett. B, 773, 654-662 (2017) · doi:10.1016/j.physletb.2017.09.036
[14] Herdeiro, Carlos A. R.; Radu, Eugen, Asymptotically flat, spherical, self-interacting scalar, Dirac and Proca stars, Symmetry, 12, 2032 (2020) · doi:10.3390/sym12122032
[15] Herdeiro, C.; Perapechka, I.; Radu, E.; Shnir, Ya., Asymptotically flat spinning scalar, Dirac and Proca stars, Phys. Lett. B, 797 (2019) · Zbl 1427.83010 · doi:10.1016/j.physletb.2019.134845
[16] Seidel, Edward; Suen, Wai-Mo, Formation of solitonic stars through gravitational cooling, Phys. Rev. Lett., 72, 2516-2519 (1994) · doi:10.1103/PhysRevLett.72.2516
[17] Sanchis-Gual, Nicolas; Herdeiro, Carlos; Radu, Eugen; Degollado, Juan Carlos; Font, José A., Numerical evolutions of spherical Proca stars, Phys. Rev. D, 95 (2017) · Zbl 1371.83114 · doi:10.1103/PhysRevD.95.104028
[18] Di Giovanni, Fabrizio; Sanchis-Gual, Nicolas; Herdeiro, Carlos A. R.; Font, José A., Dynamical formation of Proca stars and quasistationary solitonic objects, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.064044
[19] Sanchis-Gual, N.; Di Giovanni, F.; Zilhão, M.; Herdeiro, C.; Cerdá-Durán, P.; Font, J. A., Nonlinear Dynamics of Spinning Bosonic Stars: Formation and Stability, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.221101
[20] Di Giovanni, Fabrizio; Sanchis-Gual, Nicolas; Cerdá-Durán, Pablo; Zilhão, Miguel; Herdeiro, Carlos; Font, José A., Dynamical bar-mode instability in spinning bosonic stars, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.124009
[21] Siemonsen, Nils; East, William E., Stability of rotating scalar boson stars with nonlinear interactions, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.044022
[22] Page, Don N., Classical and quantum decay of oscillatons: Oscillating selfgravitating real scalar field solitons, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.023002
[23] Palenzuela, C.; Lehner, L.; Liebling, Steven L., Orbital Dynamics of Binary Boson Star Systems, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.044036
[24] Palenzuela, Carlos; Pani, Paolo; Bezares, Miguel; Cardoso, Vitor; Lehner, Luis; Liebling, Steven, Gravitational Wave Signatures of Highly Compact Boson Star Binaries, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.104058
[25] Bezares, Miguel; Palenzuela, Carlos; Bona, Carles, Final fate of compact boson star mergers, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.124005
[26] Sanchis-Gual, Nicolas; Herdeiro, Carlos; Font, José A.; Radu, Eugen; Di Giovanni, Fabrizio, Head-on collisions and orbital mergers of Proca stars, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.024017
[27] LIGO Scientific, Virgo Collaboration; Abbott, R., GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_⊙, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.101102
[28] Bustillo, Juan Calderón; Sanchis-Gual, Nicolas; Torres-Forné, Alejandro; Font, José A.; Vajpeyi, Avi; Smith, Rory, GW190521 as a Merger of Proca Stars: A Potential New Vector Boson of 8.7× 10^-13 eV, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.081101
[29] Brito, Richard; Cardoso, Vitor; Pani, Paolo, Superradiance: New Frontiers in Black Hole Physics, Lect. Notes Phys., 906, pp.1-237 (2015) · doi:10.1007/978-3-319-19000-6
[30] Herdeiro, Carlos A. R.; Radu, Eugen, Kerr black holes with scalar hair, Phys. Rev. Lett., 112 (2014) · Zbl 1305.83006 · doi:10.1103/PhysRevLett.112.221101
[31] Herdeiro, Carlos; Radu, Eugen; Rúnarsson, Helgi, Kerr black holes with Proca hair, Class. Quant. Grav., 33 (2016) · Zbl 1344.83032 · doi:10.1088/0264-9381/33/15/154001
[32] Cunha, Pedro V. P.; Herdeiro, Carlos A. R.; Radu, Eugen, EHT constraint on the ultralight scalar hair of the M87 supermassive black hole, Universe, 5, 220 (2019) · doi:10.3390/universe5120220
[33] Peccei, R. D.; Quinn, Helen R., CP Conservation in the Presence of Instantons, Phys. Rev. Lett., 38, 1440-1443 (1977) · doi:10.1103/PhysRevLett.38.1440
[34] Graham, Peter W.; Irastorza, Igor G.; Lamoreaux, Steven K.; Lindner, Axel; van Bibber, Karl A., Experimental Searches for the Axion and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci., 65, 485-514 (2015) · doi:10.1146/annurev-nucl-102014-022120
[35] Irastorza, Igor G.; Redondo, Javier, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys., 102, 89-159 (2018) · doi:10.1016/j.ppnp.2018.05.003
[36] Sikivie, Pierre, Invisible Axion Search Methods, Rev. Mod. Phys., 93 (2021) · doi:10.1103/RevModPhys.93.015004
[37] Choi, Kiwoon; Im, Sang Hui; Shin, Chang Sub, Recent Progress in the Physics of Axions and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci., 71, 225-252 (2021) · doi:10.1146/annurev-nucl-120720-031147
[38] Bauer, Martin; Heiles, Mathias; Neubert, Matthias; Thamm, Andrea, Axion-Like Particles at Future Colliders, Eur. Phys. J. C, 79, 74 (2019) · doi:10.1140/epjc/s10052-019-6587-9
[39] Flórez, Andrés; Gurrola, Alfredo; Johns, Will; Sheldon, Paul; Sheridan, Elijah; Sinha, Kuver, Probing axionlike particles with γγ final states from vector boson fusion processes at the LHC, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.095001
[40] Baldenegro, Cristian; Fichet, Sylvain; von Gersdorff, Gero; Royon, Christophe, Searching for axion-like particles with proton tagging at the LHC, JHEP, 06, 131 (2018) · doi:10.1007/JHEP06(2018)131
[41] ATLAS Collaboration; Aad, Georges, Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb^-1 of Pb+Pb data with the ATLAS detector, JHEP, 11, 050 (2021) · doi:10.1007/JHEP11(2021)050
[42] CMS Collaboration; Sirunyan, Albert M., Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at √(s_NN) = 5.02 TeV, Phys. Lett. B, 797 (2019) · doi:10.1016/j.physletb.2019.134826
[43] Citron, Z.; Dainese, Andrea; Mangano, Michelangelo; Meyer, Andreas B.; Nisati, Aleandro; Salam, Gavin; Vesterinen, Mika Anton, Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams, CERN Yellow Rep. Monogr., 7, 1159-1410 (2019) · doi:10.23731/CYRM-2019-007.1159
[44] Fabbrichesi, Marco; Gabrielli, Emidio; Lanfranchi, Gaia, The Dark Photon (2020) · doi:10.1007/978-3-030-62519-1
[45] Filippi, Alessandra; De Napoli, Marzio, Searching in the dark: the hunt for the dark photon, Rev. Phys., 5 (2020) · doi:10.1016/j.revip.2020.100042
[46] Graham, Matt; Hearty, Christopher; Williams, Mike, Searches for dark photons at accelerators (2021)
[47] NA62 Collaboration; Cortina Gil, Eduardo, An investigation of the very rare K^+→π^+νν decay, JHEP, 11, 042 (2020) · doi:10.1007/JHEP11(2020)042
[48] Yoshida, Shijun; Eriguchi, Yoshiharu, Rotating boson stars in general relativity, Phys. Rev. D, 56, 762-771 (1997) · doi:10.1103/PhysRevD.56.762
[49] Grandclement, Philippe; Somé, Claire; Gourgoulhon, Eric, Models of rotating boson stars and geodesics around them: new type of orbits, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.024068
[50] Colpi, M.; Shapiro, S. L.; Wasserman, I., Boson Stars: Gravitational Equilibria of Selfinteracting Scalar Fields, Phys. Rev. Lett., 57, 2485-2488 (1986) · doi:10.1103/PhysRevLett.57.2485
[51] Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi, Kerr black holes with self-interacting scalar hair: hairier but not heavier, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.084059
[52] Townsend, P. K., Black holes: Lecture notes (1997)
[53] Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Montero, Pedro J.; Font, José A.; Herdeiro, Carlos, Explosion and Final State of an Unstable Reissner-Nordström Black Hole, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.141101
[54] Bosch, Pablo; Green, Stephen R.; Lehner, Luis, Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.141102
[55] East, William E.; Pretorius, Frans, Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.041101
[56] Herdeiro, Carlos A. R.; Radu, Eugen, Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.261101
[57] Santos, Nuno M.; Benone, Carolina L.; Crispino, Luís C. B.; Herdeiro, Carlos A. R.; Radu, Eugen, Black holes with synchronised Proca hair: linear clouds and fundamental non-linear solutions, JHEP, 07, 010 (2020) · Zbl 1475.83045 · doi:10.1007/JHEP07(2020)010
[58] Zhu, Sylvia J.; Baryakhtar, Masha; Papa, Maria Alessandra; Tsuna, Daichi; Kawanaka, Norita; Eggenstein, Heinz-Bernd, Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.063020
[59] M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading, U.S.A. (1995).
[60] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[61] Manton, N. S., Topology in the Weinberg-Salam Theory, Phys. Rev. D, 28, 2019 (1983) · doi:10.1103/PhysRevD.28.2019
[62] Klinkhamer, Frans R.; Manton, N. S., A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D, 30, 2212 (1984) · doi:10.1103/PhysRevD.30.2212
[63] Volkov, Mikhail S.; Gal’tsov, Dmitri V., Gravitating nonAbelian solitons and black holes with Yang-Mills fields, Phys. Rept., 319, 1-83 (1999) · doi:10.1016/S0370-1573(99)00010-1
[64] Greene, Brian R.; Mathur, Samir D.; O’Neill, Christopher M., Eluding the no hair conjecture: Black holes in spontaneously broken gauge theories, Phys. Rev. D, 47, 2242-2259 (1993) · doi:10.1103/PhysRevD.47.2242
[65] Mavromatos, N. E.; Winstanley, Elizabeth, Aspects of hairy black holes in spontaneously broken Einstein Yang-Mills systems: Stability analysis and entropy considerations, Phys. Rev. D, 53, 3190-3214 (1996) · doi:10.1103/PhysRevD.53.3190
[66] Winstanley, E.; Mavromatos, N. E., Instability of hairy black holes in spontaneously broken Einstein Yang-Mills Higgs systems, Phys. Lett. B, 352, 242-246 (1995) · doi:10.1016/0370-2693(95)00562-Y
[67] Susskind, Leonard, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D, 20, 2619-2625 (1979) · doi:10.1103/PhysRevD.20.2619
[68] Gildener, Eldad, Gauge Symmetry Hierarchies, Phys. Rev. D, 14, 1667 (1976) · doi:10.1103/PhysRevD.14.1667
[69] East, William E., Massive Boson Superradiant Instability of Black Holes: Nonlinear Growth, Saturation, and Gravitational Radiation, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.131104
[70] Siemonsen, Nils; East, William E., Gravitational wave signatures of ultralight vector bosons from black hole superradiance, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.024019
[71] Brito, Richard; Ghosh, Shrobana; Barausse, Enrico; Berti, Emanuele; Cardoso, Vitor; Dvorkin, Irina, Gravitational wave searches for ultralight bosons with LIGO and LISA, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.064050
[72] Palomba, Cristiano, Direct constraints on ultra-light boson mass from searches for continuous gravitational waves, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.171101
[73] Seidel, E.; Suen, W. M., Oscillating soliton stars, Phys. Rev. Lett., 66, 1659-1662 (1991) · doi:10.1103/PhysRevLett.66.1659
[74] Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos, Interaction between bosonic dark matter and stars, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.044045
[75] Helfer, Thomas; Lim, Eugene A.; Garcia, Marcos A. G.; Amin, Mustafa A., Gravitational Wave Emission from Collisions of Compact Scalar Solitons, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.044046
[76] Widdicombe, James Y.; Helfer, Thomas; Lim, Eugene A., Black hole formation in relativistic Oscillaton collisions, JCAP, 01 (2020) · doi:10.1088/1475-7516/2020/01/027
[77] Bento, M. C.; Bertolami, O.; Rosenfeld, R.; Teodoro, L., Selfinteracting dark matter and invisibly decaying Higgs, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.041302
[78] Barger, Vernon; Langacker, Paul; McCaskey, Mathew; Ramsey-Musolf, Michael; Shaughnessy, Gabe, Complex Singlet Extension of the Standard Model, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.015018
[79] Randall, Scott W.; Markevitch, Maxim; Clowe, Douglas; Gonzalez, Anthony H.; Bradac, Marusa, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J., 679, 1173-1180 (2008) · doi:10.1086/587859
[80] McDonald, John; Sahu, Narendra; Sarkar, Utpal, Type-II Seesaw at Collider, Lepton Asymmetry and Singlet Scalar Dark Matter, JCAP, 04 (2008) · doi:10.1088/1475-7516/2008/04/037
[81] Harlow, Daniel; Ooguri, Hirosi, Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys., 383, 1669-1804 (2021) · Zbl 1472.81208 · doi:10.1007/s00220-021-04040-y
[82] Burgess, C. P., Goldstone and pseudoGoldstone bosons in nuclear, particle and condensed matter physics, Phys. Rept., 330, 193-261 (2000) · doi:10.1016/S0370-1573(99)00111-8
[83] Gross, Christian; Lebedev, Oleg; Toma, Takashi, Cancellation Mechanism for Dark-Matter-Nucleon Interaction, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.191801
[84] Azevedo, Duarte; Duch, Mateusz; Grzadkowski, Bohdan; Huang, Da; Iglicki, Michal; Santos, Rui, One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model, JHEP, 01, 138 (2019) · doi:10.1007/JHEP01(2019)138
[85] Glaus, Seraina; Mühlleitner, Margarete; Müller, Jonas; Patel, Shruti; Römer, Tizian; Santos, Rui, Electroweak Corrections in a Pseudo-Nambu Goldstone Dark Matter Model Revisited, JHEP, 12, 034 (2020) · doi:10.1007/JHEP12(2020)034
[86] Azevedo, Duarte; Capucha, Rodrigo; Gouveia, Emanuel; Onofre, António; Santos, Rui, Light Higgs searches in ttϕ production at the LHC, JHEP, 04, 077 (2021) · doi:10.1007/JHEP04(2021)077
[87] Coimbra, Rita; Sampaio, Marco O. P.; Santos, Rui, ScannerS: Constraining the phase diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C, 73, 2428 (2013) · doi:10.1140/epjc/s10052-013-2428-4
[88] Mühlleitner, Margarete; Sampaio, Marco O. P.; Santos, Rui; Wittbrodt, Jonas, ScannerS: Parameter Scans in Extended Scalar Sectors (2020)
[89] ATLAS, CMS Collaboration; Aad, Georges, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √(s)=7 and 8 TeV, JHEP, 08, 045 (2016) · doi:10.1007/JHEP08(2016)045
[90] ATLAS Collaboration; Aad, Georges, Combination of searches for Higgs boson pairs in pp collisions at √(s) = 13 TeV with the ATLAS detector, Phys. Lett. B, 800 (2020) · doi:10.1016/j.physletb.2019.135103
[91] Robens, T., Extended scalar sectors at current and future colliders (2021)
[92] ATLAS Collaboration; Aaboud, Morad, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.231801
[93] Huitu, Katri; Koivunen, Niko; Lebedev, Oleg; Mondal, Subhadeep; Toma, Takashi, Probing pseudo-Goldstone dark matter at the LHC, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.015009
[94] Cardoso, Vitor; Dias, Óscar J. C.; Hartnett, Gavin S.; Middleton, Matthew; Pani, Paolo; Santos, Jorge E., Constraining the mass of dark photons and axion-like particles through black-hole superradiance, JCAP, 03 (2018) · doi:10.1088/1475-7516/2018/03/043
[95] Ng, Ken K. Y.; Vitale, Salvatore; Hannuksela, Otto A.; Li, Tjonnie G. F., Constraints on Ultralight Scalar Bosons within Black Hole Spin Measurements from the LIGO-Virgo GWTC-2, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.151102
[96] Davoudiasl, Hooman; Denton, Peter B., Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.021102
[97] D’Antonio, S., Semicoherent analysis method to search for continuous gravitational waves emitted by ultralight boson clouds around spinning black holes, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.103017
[98] Tsukada, Leo; Callister, Thomas; Matas, Andrew; Meyers, Patrick, First search for a stochastic gravitational-wave background from ultralight bosons, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.103015
[99] Rosa, João G.; Kephart, Thomas W., Stimulated Axion Decay in Superradiant Clouds around Primordial Black Holes, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.231102
[100] Ikeda, Taishi; Brito, Richard; Cardoso, Vitor, Blasts of Light from Axions, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.081101
[101] Boskovic, Mateja; Brito, Richard; Cardoso, Vitor; Ikeda, Taishi; Witek, Helvi, Axionic instabilities and new black hole solutions, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.035006
[102] Fukuda, Hajime; Nakayama, Kazunori, Aspects of Nonlinear Effect on Black Hole Superradiance, JHEP, 01, 128 (2020) · Zbl 1434.83063 · doi:10.1007/JHEP01(2020)128
[103] Balakrishna, Jayashree; Seidel, Edward; Suen, Wai-Mo, Dynamical evolution of boson stars. 2. Excited states and selfinteracting fields, Phys. Rev. D, 58 (1998) · doi:10.1103/PhysRevD.58.104004
[104] Guzman, F. Siddhartha, Evolving spherical boson stars on a 3-D Cartesian grid, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.044033
[105] Escorihuela-Tomàs, Alejandro; Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Font, José A., Quasistationary solutions of scalar fields around collapsing self-interacting boson stars, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.024015
[106] Dmitriev, A. S.; Levkov, D. G.; Panin, A. G.; Pushnaya, E. K.; Tkachev, I. I., Instability of rotating Bose stars, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.023504
[107] Ryan, Fintan D., Spinning boson stars with large selfinteraction, Phys. Rev. D, 55, 6081-6091 (1997) · doi:10.1103/PhysRevD.55.6081
[108] Coleman, Sidney R., Q-balls, Nucl. Phys. B, 262, 263 (1985) · doi:10.1016/0550-3213(86)90520-1
[109] Lee, T. D.; Pang, Y.; Ren, Hai-Cang; Pang, Yang, Nontopological solitons, Phys. Rept., 221, 251-350 (1992) · doi:10.1016/0370-1573(92)90064-7
[110] Kusenko, Alexander, Solitons in the supersymmetric extensions of the standard model, Phys. Lett. B, 405, 108 (1997) · doi:10.1016/S0370-2693(97)00584-4
[111] Kusenko, Alexander; Shaposhnikov, Mikhail E., Supersymmetric Q balls as dark matter, Phys. Lett. B, 418, 46-54 (1998) · doi:10.1016/S0370-2693(97)01375-0
[112] Herdeiro, Carlos; Radu, Eugen; Runarsson, Helgi, Non-linear Q-clouds around Kerr black holes, Phys. Lett. B, 739, 302-307 (2014) · Zbl 1306.83045 · doi:10.1016/j.physletb.2014.11.005
[113] Morais, António P.; Pasechnik, Roman; Rodrigues, J. Pedro, What can a heavy U(1)_B-L Z’ boson do to the muon (g-2)_μ anomaly and to a new Higgs boson mass?, Chin. Phys. C, 45 (2021) · doi:10.1088/1674-1137/abc16a
[114] Duch, Mateusz; Grzadkowski, Bohdan; McGarrie, Moritz, A stable Higgs portal with vector dark matter, JHEP, 09, 162 (2015) · doi:10.1007/JHEP09(2015)162
[115] Curtin, David; Setford, Jack, Signatures of Mirror Stars, JHEP, 03, 041 (2020) · doi:10.1007/JHEP03(2020)041
[116] Ciancarella, Raul; Pannarale, Francesco; Addazi, Andrea; Marciano, Antonino, Constraining mirror dark matter inside neutron stars, Phys. Dark Univ., 32 (2021) · doi:10.1016/j.dark.2021.100796
[117] Ritter, Alexander C.; Volkas, Raymond R., Implementing asymmetric dark matter and dark electroweak baryogenesis in a mirror two-Higgs-doublet model, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.035032
[118] Kaganovich, Alexander B., Mirror-extended standard model with spontaneously broken left-right symmetry and its implementation in the course of cosmological evolution (2021)
[119] Foot, Robert, Mirror matter-type dark matter, Int. J. Mod. Phys. D, 13, 2161-2192 (2004) · Zbl 1065.83064 · doi:10.1142/S0218271804006449
[120] Foot, R.; Volkas, Raymond R., Natural electroweak symmetry breaking in generalised mirror matter models, Phys. Lett. B, 645, 75-81 (2007) · Zbl 1256.81091 · doi:10.1016/j.physletb.2006.11.067
[121] Merkel, H., Search at the Mainz Microtron for Light Massive Gauge Bosons Relevant for the Muon g-2 Anomaly, Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.221802
[122] NA48/2 Collaboration; Batley, J. R., Search for the dark photon in π^0 decays, Phys. Lett. B, 746, 178-185 (2015) · doi:10.1016/j.physletb.2015.04.068
[123] BaBar Collaboration; Lees, J. P., Search for a Dark Photon in e^+e^- Collisions at BaBar, Phys. Rev. Lett., 113 (2014) · doi:10.1103/PhysRevLett.113.201801
[124] BaBar Collaboration; Lees, J. P., Search for Invisible Decays of a Dark Photon Produced in e^+e^- Collisions at BaBar, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.131804
[125] Fabbrichesi, M.; Gabrielli, E.; Mele, B., Hunting down massless dark photons in kaon physics, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.031801
[126] Pan, Jun-Xing; He, Min; He, Xiao-Gang; Li, Gang, Scrutinizing a massless dark photon: basis independence, Nucl. Phys. B, 953 (2020) · Zbl 1473.81249 · doi:10.1016/j.nuclphysb.2020.114968
[127] XENON Collaboration; Aprile, E., Excess electronic recoil events in XENON1T, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.072004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.