×

Resonant Hawking radiation as an instability. (English) Zbl 1475.83054

Summary: We consider a simple model for a black-hole laser: a Bose-Einstein condensate with uniform speed of sound and partially uniform flow, establishing two horizons, a black-hole and a white-hole horizon. Waves confined between the horizons are amplified similar to radiation in a laser cavity. Black-hole lasing appears as an instability with discrete sets of modes given approximately by a round-trip condition. We found that, in addition to the regular Hawking radiation, trans-Planckian radiation does tunnel out of the black-hole laser.

MSC:

83C57 Black holes
78A60 Lasers, masers, optical bistability, nonlinear optics
76E20 Stability and instability of geophysical and astrophysical flows
81V73 Bosonic systems in quantum theory
82B26 Phase transitions (general) in equilibrium statistical mechanics
81U26 Tunneling in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Helfer, A. D., Do black holes radiate?, Rep. Prog. Phys., 66, 943-1008, (2003) · doi:10.1088/0034-4885/66/6/202
[2] Hawking, S. W., Black hole explosions, Nature, 248, 30-31, (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[3] Unruh, W. G., Experimental black-hole evaporation?, Phys. Rev. Lett., 46, 1351-1353, (1981) · doi:10.1103/PhysRevLett.46.1351
[4] Visser, M., Essential and inessential features of Hawking radiation, Int. J. Mod. Phys. A, 12, 649-661, (2003) · Zbl 1079.83532 · doi:10.1142/S0218271803003190
[5] Garay, L. J.; Anglin, J. R.; Cirac, J. I.; Zoller, P., Sonic analog of gravitational black holes in Bose-Einstein condensates, Phys. Rev. Lett., 85, 4643-4647, (2000) · doi:10.1103/PhysRevLett.85.4643
[6] Barceló, C.; Liberati, S.; Visser, M., Analogue gravity, Living Rev. Relativ., 14, 3, (2011) · Zbl 1316.83022 · doi:10.12942/lrr-2011-3
[7] Rousseaux, G.; Mathis, C.; Maïssa, P.; Philbin, T. G.; Leonhardt, U., Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?, New J. Phys., 10, (2008) · doi:10.1088/1367-2630/10/5/053015
[8] Euvé, L-P; Michel, F.; Parentani, R.; Philbin, T. G.; Rousseaux, G., Observation of noise correlated by the Hawking effect in a water tank, Phys. Rev. Lett., 117, (2016) · doi:10.1103/PhysRevLett.117.121301
[9] Philbin, T. G.; Kuklewicz, C.; Robertson, S.; Hill, S.; König, F.; Leonhardt, U., Fiber-optical analog of the event horizon, Science, 319, 1367-1370, (2008) · doi:10.1126/science.1153625
[10] Bermudez, D.; Drori, J.; Leonhardt, U., Dialogues about geometry and light, 190, 1-30, (2016) · Zbl 1360.78002 · doi:10.3254/978-1-61499-647-7-1
[11] Drori, J.; Rosenberg, Y.; Bermudez, D.; Silberberg, Y.; Leonhardt, U., Observation of stimulated Hawking radiation in an optical analogue, Phys. Rev. Lett., (2018)
[12] de Nova, J. R M.; Golubkov, K.; Kolobov, V. I.; Steinhauer, J., Observation of Planckian Hawking radiation at the Hawking temperature in an analogue black hole, (2018)
[13] Corley, S.; Jacobson, T., Black hole lasers, Phys. Rev. D, 59, (1999) · doi:10.1103/PhysRevD.59.124011
[14] Fischer, U. R.; Volovik, G. E., Thermal quasi-equilibrium states across Landau Horizons in the effective gravity of superfluids, Int. J. Mod. Phys. D, 10, 57-88, (2001) · doi:10.1142/S0218271801000962
[15] Coutant, A.; Parentani, R., Black hole lasers, a mode analysis, Phys. Rev. D, 81, (2010) · doi:10.1103/PhysRevD.81.084042
[16] Finazzi, S.; Parentani, R., Black hole lasers in Bose-Einstein condensates, New J. Phys., 12, (2010) · Zbl 1448.82049 · doi:10.1088/1367-2630/12/9/095015
[17] Faccio, D.; Arane, T.; Lamperti, M.; Leonhardt, U., Optical black hole lasers, Class. Quantum Grav., 29, (2012) · Zbl 1266.83109 · doi:10.1088/0264-9381/29/22/224009
[18] Finazzi, S.; Piazza, F.; Abad, M.; Smerzi, A.; Recati, A., Instability of the superfluid flow as black-hole lasing effect, Phys. Rev. Lett., 114, (2015) · doi:10.1103/PhysRevLett.114.245301
[19] Peloquin, C.; Euvé, L-P; Philbin, T. G.; Rousseaux, G., Analog wormholes and black hole laser effects in hydrodynamics, Phys. Rev. D, 93, (2016) · doi:10.1103/PhysRevD.93.084032
[20] Gaona-Reyes, J. L.; Bermudez, D., The theory of optical black hole lasers, Ann. Phys., 380, 41-58, (2017) · Zbl 1365.83019 · doi:10.1016/j.aop.2017.03.005
[21] Leonhardt, U., Questioning the recent observation of quantum Hawking radiation, Annalen der Physik, 530, 1700114-1700117, (2018) · Zbl 07756862 · doi:10.1002/andp.201700114
[22] Steinhauer, J., Observation of self-amplifying Hawking radiation in an analogue black-hole laser, Nat. Phys., 10, 864-869, (2014) · doi:10.1038/nphys3104
[23] Jacobson, T., Black hole evaporation and ultrashort distances, Phys. Rev. D, 44, 1731-1739, (1991) · doi:10.1103/PhysRevD.44.1731
[24] Pitaevskii, L.; Stringari, S., Bose-Einstein Condensation and Superfluidity, (2016), Oxford: Oxford University Press, Oxford · Zbl 1347.82004
[25] Leonhardt, U.; Kiss, T.; Öhberg, P., Theory of elementary excitations in unstable Bose-Einstein condensates and the instability of sonic horizons, Phys. Rev. A, 67, (2003) · doi:10.1103/PhysRevA.67.033602
[26] Unruh, W. G., Sonic analogue of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D, 51, 2827-2838, (1995) · doi:10.1103/PhysRevD.51.2827
[27] Corley, S.; Jacobson, T., Hawking spectrum and high frequency dispersion, Phys. Rev. D, 54, 1568-1586, (1996) · doi:10.1103/PhysRevD.54.1568
[28] Gaona-Reyes, J. L., Theoretical description of the optical black hole laser, MSc Thesis, (2016)
[29] Larré, P. É.; Recati, A.; Carusotto, I.; Pavloff, N., Quantum fluctuations around black hole horizons in Bose-Einstein condensates, Phys. Rev. A, 85, (2012) · doi:10.1103/PhysRevA.85.013621
[30] Robertson, S., Hawking radiation in dispersive media, PhD Thesis, (2011)
[31] Leonhardt, U.; Philbin, T. G., Black hole lasers revisited, Lect. Notes Phys., 718, 229-245, (2007) · Zbl 1131.83011 · doi:10.1007/3-540-70859-6_9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.