×

Evolution of spherical perturbations in the cosmological environment of degenerate scalar-charged fermions with a scalar Higgs coupling. (English. Russian original) Zbl 07723441

Theor. Math. Phys. 215, No. 3, 862-892 (2023); translation from Teor. Mat. Fiz. 215, No. 3, 465-499 (2023).
Summary: A mathematical model is constructed for the evolution of spherical perturbations in a cosmological one-component statistical system of completely degenerate scalar-charged fermions with a scalar Higgs coupling. A complete system of self-consistent equations for the evolution of small spherical perturbations is constructed. Singular parts in perturbation modes corresponding to a point-like mass and scalar charge are singled out. We obtain systems of ordinary differential equations for the evolution of the mass and charge of a singular source and systems of partial differential equations for the evolution of nonsingular parts of perturbations. The coefficients of partial differential equations are described by solutions of evolutionary equations for mass and charge. The problem of spatially localized perturbations for solutions that are polynomial in the radial coordinate is reduced to a recurrent system of ordinary linear differential equations for the coefficients of these polynomials. The properties of solutions are studied in the case of cubic polynomials; in particular, it is shown that the radii of localization of gravitational and scalar perturbations coincide and evolve in proportion to the scale factor. The evolution of perturbations is modeled numerically, which in particular confirms the exponential growth of the central mass of the perturbation, and also reveals the oscillatory nature of the evolution of the scalar charge.

MSC:

83F05 Relativistic cosmology
52A55 Spherical and hyperbolic convexity
35B20 Perturbations in context of PDEs
76E20 Stability and instability of geophysical and astrophysical flows
81V74 Fermionic systems in quantum theory
26C05 Real polynomials: analytic properties, etc.
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ignat’ev, Yu. G., Gravitational-scalar instability of a two-component degenerate system of scalarly charged fermions with asymmetric Higgs interaction, Gravit. Cosmol., 28, 25-36 (2022) · Zbl 1495.83072 · doi:10.1134/S0202289322010078
[2] Ignat’ev, Yu. G., Single-field model of gravitational-scalar instability. I. Evolution of perturbations, Gravit. Cosmol., 28, 275-291 (2022) · Zbl 1511.83065 · doi:10.1134/S0202289322030045
[3] Ignat’ev, Yu. G., Single-field model of gravitational-scalar instability. II. Black hole formation, Gravit. Cosmol., 28, 375-381 (2022) · Zbl 1517.83042 · doi:10.1134/S0202289322040107
[4] Ignat’ev, Yu. G., Two-field model of gravitational-scalar instability and the formation of supermassive black holes in the early Universe, Gravit. Cosmol., 29, 0 (2023) · Zbl 07720671 · doi:10.1134/S0202289323020056
[5] Zhu, Q.; Li, Y.; Li, Y.; Maji, M.; Yajima, H.; Schneider, R.; Hernquist, L., The formation of the first quasars. I. The black hole seeds, accretion and feedback models (0000)
[6] Gillessen, S.; Eisenhauer, F.; Trippe, S.; Alexander, T.; Genzel, R.; Martins, F.; Ott, T., Monitoring stellar orbits around the massive black hole in the Galactic center, Astrophys. J., 692 (2009) · doi:10.1088/0004-637X/692/2/1075
[7] Doeleman, S. S.; Weintroub, J.; Rogers, A. E. E., Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre, Nature, 455, 78-80 (2008) · doi:10.1038/nature07245
[8] Fan, X.; Barth, A.; Banados, E., The First Luminous Quasars and Their Host Galaxies, Bulletin of the AAS, 51, 0 (2019)
[9] Trakhtenbrot, B., What do observations tell us about the highest-redshift supermassive black holes? (0000)
[10] Ureña-López, L. A.; Liddle, A. R., Supermassive black holes in scalar field galaxy halos, Phys. Rev. D, 66 (2002) · doi:10.1103/PhysRevD.66.083005
[11] Cunha, P. V. P.; Herdeiro, C. A. R.; Radu, E.; Rúnarsson, H. F., Shadows of Kerr black holes with and without scalar hair, Internat. J. Modern Phys. D, 25 (2016) · Zbl 1347.83020 · doi:10.1142/S0218271816410212
[12] Brax, P.; Valageas, P.; Cembranos, J. A. R., Fate of scalar dark matter solitons around supermassive galactic black holes, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.023521
[13] Ignat’ev, Yu. G.; Ignatyev, D. Yu., Cosmological models based on a statistical system of scalar charged degenerate fermions and an asymmetric Higgs scalar doublet, Theoret. and Math. Phys., 209, 1437-1472 (2021) · Zbl 1482.83135 · doi:10.1134/S0040577921100081
[14] Ignat’ev, Yu. G., Relativistic canonical formalism and the invariant single-particle distribution function in the general theory of relativity, Soviet Phys. J., 26, 686-690 (1983) · doi:10.1007/BF00898874
[15] Ignat’ev, Yu. G.; Popov, A. A., Kinetic equations for ultrarelativistic particles in a Robertson- Walker universy and isotropization of relict radiation by gravitational interactions, Astrophys. Space Sci., 163, 153-174 (1990) · doi:10.1007/BF00639984
[16] Ignat’ev, Yu. G.; Popov, A. A., Spherically symmetric perturbation of a ultrarelativistic fluid in a homogeneous and isotropic universe, Phys. Lett. A., 220, 22-29 (1996) · Zbl 0972.83559 · doi:10.1016/0375-9601(96)00524-5
[17] Ignat’ev, Yu. G.; Elmakhi, N., A dynamic model of spherical perturbations in the Friedmann Universe. I, Russ. Phys. J., 51, 74-88 (2008) · Zbl 1145.83363 · doi:10.1007/s11182-008-9019-0
[18] Ignat’ev, Yu. G.; Elmakhi, N., A dynamic model of spherical perturbations in the Friedmann Universe. II. Retarded solutions to an ultrarelativistic equation of state, Russ. Phys. J., 51, 735-745 (2008) · Zbl 1186.83036 · doi:10.1007/s11182-008-9103-5
[19] Ignat’ev, Yu. G.; Elmakhi, N., A dynamic model of spherical perturbations in the Friedmann universe. III. Self-similar solutions, Russ. Phys. J., 52, 15-24 (2009) · Zbl 1178.83015 · doi:10.1007/s11182-009-9197-4
[20] Ignat’ev, Yu. G., Gravitational-scalar unstability of a cosmological model based on a two-component statistical system with asymmetric scalar Higgs fermion interaction, Space, Time and Fundamental Interactions, 0, 64-89 (2022)
[21] Ignat’ev, Yu. G., Gravitational-scalar instability of cosmological model based on two-component system of degenerate scalarly charged fermions with asymmetric Higgs interaction. I. Equations for perturbations, Russ. Phys. J., 65, 1490-1502 (2023) · doi:10.1007/s11182-023-02795-6
[22] Ignat’ev, Yu. G., Gravitational-scalar instability of cosmological model based on two-component system of degenerate scalarly charged fermions with asymmetric Higgs interaction. II. WKB-approximation, Russ. Phys. J., 65, 1503-1521 (2023) · doi:10.1007/s11182-023-02796-5
[23] Ignat’ev, Yu. G.; Agathonov, A. A.; Ignatyev, D. Yu., Cosmological evolution of a statistical system of degenerate scalar-charged fermions with an asymmetric scalar doublet. I. Two-component system of assorted charges, Gravit. Cosmol., 27, 338-349 (2021) · Zbl 1487.83014 · doi:10.1134/S020228932104006X
[24] Ignat’ev, Yu. G.; Agathonov, A. A.; Ignatyev, D. Yu., Cosmological evolution of a statistical system of degenerate scalarly charged fermions with an asymmetric scalar doublet. II. One-component system of doubly charged fermions, Gravit. Cosmol., 28, 10-24 (2022) · Zbl 1495.83016 · doi:10.1134/S0202289322010066
[25] Ignat’ev, Yu.; Agathonov, A.; Mikhailov, M.; Ignatyev, D., Cosmological evolution of statistical system of scalar charged particles, Astrophys. Space Sci., 357 (2015) · doi:10.1007/s10509-015-2324-5
[26] Landau, L. D.; Lifshitz, E. M., Course of Theoretical Physics (1971), Oxford: Pergamon Press, Oxford
[27] Ignat’ev, Yu. G., Stability of the cosmological system of degenerated scalarly charged fermions and Higgs scalar fields. I. Mathematical model of linear plane perturbations, Gravit. Cosmol., 27, 30-35 (2021) · Zbl 1480.83042 · doi:10.1134/S0202289321010102
[28] Ignat’ev, Yu. G., The self-consistent field method and the macroscopic universe consisting of a fluid and black holes, Gravit. Cosmol., 25, 354-361 (2019) · Zbl 1437.83095 · doi:10.1134/S0202289319040078
[29] Sing, J. L., Relativity: The General Theory (1960), Amsterdam: North-Holland, Amsterdam · Zbl 0090.18504
[30] Gorbunov, D. S.; Rubakov, V. A., Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (2011), Singapore: World Sci., Singapore · Zbl 1246.83007 · doi:10.1142/7873
[31] Ignat’ev, Yu. G.; Kokh, I. A., Complete cosmological model based on an asymmetric scalar Higgs doublet, Theoret. and Math. Phys., 207, 514-552 (2021) · Zbl 1468.83069 · doi:10.1134/S0040577921040097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.