×

Inertial, barotropic, and baroclinic instabilities of the Bickley jet in two-layer rotating shallow water model. (English) Zbl 1308.76180

Summary: We undertake a detailed study of inertial instability of the barotropic Bickley jet and its nonlinear saturation in the 2 layer rotating shallow water (RSW) model on the f-plane and compare it with the classical barotropic and baroclinic instabilities. We start with analytical and numerical investigation of the linear stability problem under hypothesis of strict homogeneity in the along-flow direction (“symmetric instability”). The unstable modes are identified and their parameters are determined. The dependence of the instability on Rossby and Burger numbers of the jet is investigated. The nonlinear development of the instability is then studied with the help of high-resolution well-balanced finite-volume numerical code recently developed for multi-layer RSW, which is initialized with the most unstable mode found from the linear stability analysis. It is shown that symmetric inertial instability is saturated by reorganization of the mean flow, without full homogenization of the anticyclonic region, where the unstable modes reside. We then study along the same lines the fully two-dimensional (2D) problem and compare the results with the one-dimensional analysis. The barotropic instability competes with inertial instability in this case. We show that, for sufficiently strong anticyclonic shears, the inertial instability still has the dominant growth rate in the long-wave sector. The “symmetric” one-dimensional inertial instability turns to be a liming case of the ageostrophic baroclinic instability. Yet, the “asymmetric” inertial instability at small but non-zero wavenumbers has the higher growth rate. We study again the nonlinear development of the most unstable inertial mode and show that homogenization of the region of strong anticyclonic shear of the flow takes place on average. The reorganization of the flow reveals a high degree of complexity, with coherent structure formation and inertia-gravity wave emission, both giving rise to the substantial enhancement of ageostrophic motions. We compare these processes for inertial baroclinic and barotropic instabilities.{
©2011 American Institute of Physics}

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76E20 Stability and instability of geophysical and astrophysical flows
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2 · doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2
[2] DOI: 10.1175/1520-0469(1993)050<0822:AOTDLM>2.0.CO;2 · doi:10.1175/1520-0469(1993)050<0822:AOTDLM>2.0.CO;2
[3] DOI: 10.1002/qj.v105:446 · doi:10.1002/qj.v105:446
[4] DOI: 10.1175/1520-0469(1981)038<2354:OTISFT>2.0.CO;2 · doi:10.1175/1520-0469(1981)038<2354:OTISFT>2.0.CO;2
[5] DOI: 10.1017/S0022112096004016 · Zbl 0910.76017 · doi:10.1017/S0022112096004016
[6] DOI: 10.1029/2004JD005068 · doi:10.1029/2004JD005068
[7] DOI: 10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2 · doi:10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2
[8] DOI: 10.1175/1520-0469(1989)046<1285:NAOSI>2.0.CO;2 · doi:10.1175/1520-0469(1989)046<1285:NAOSI>2.0.CO;2
[9] DOI: 10.1017/S0022112002002586 · Zbl 1022.76019 · doi:10.1017/S0022112002002586
[10] DOI: 10.1016/S0377-0265(98)00042-6 · doi:10.1016/S0377-0265(98)00042-6
[11] DOI: 10.1017/S0022112007006593 · Zbl 1116.76032 · doi:10.1017/S0022112007006593
[12] DOI: 10.1017/S0022112007006325 · Zbl 1116.76031 · doi:10.1017/S0022112007006325
[13] DOI: 10.1063/1.3242283 · Zbl 1183.76420 · doi:10.1063/1.3242283
[14] T. J. Dunkerton, ”A nonsymmetric equatorial inertial instability,” J. Atmos. Sci. 38, 807 (1982).
[15] DOI: 10.1017/S0022112008001407 · Zbl 1191.76054 · doi:10.1017/S0022112008001407
[16] DOI: 10.1175/1520-0469(1986)043<2845:IIOHSF>2.0.CO;2 · doi:10.1175/1520-0469(1986)043<2845:IIOHSF>2.0.CO;2
[17] DOI: 10.1175/1520-0469(1998)055<0758:ODBAII>2.0.CO;2 · doi:10.1175/1520-0469(1998)055<0758:ODBAII>2.0.CO;2
[18] J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1987). · Zbl 0713.76005 · doi:10.1007/978-1-4612-4650-3
[19] DOI: 10.1111/j.2153-3490.1954.tb01123.x · doi:10.1111/j.2153-3490.1954.tb01123.x
[20] DOI: 10.1017/S0022112089001138 · Zbl 0669.76066 · doi:10.1017/S0022112089001138
[21] DOI: 10.3934/dcdsb.2010.13.739 · Zbl 1308.76060 · doi:10.3934/dcdsb.2010.13.739
[22] DOI: 10.1175/1520-0469(2003)060<0977:NVSSIE>2.0.CO;2 · doi:10.1175/1520-0469(2003)060<0977:NVSSIE>2.0.CO;2
[23] DOI: 10.1017/S0022112007009007 · Zbl 1159.76323 · doi:10.1017/S0022112007009007
[24] DOI: 10.1017/S0022112003003896 · Zbl 1163.76443 · doi:10.1017/S0022112003003896
[25] DOI: 10.1016/S1007-5704(03)00050-9 · Zbl 1222.86004 · doi:10.1016/S1007-5704(03)00050-9
[26] DOI: 10.1017/S0022112010003903 · Zbl 1225.76132 · doi:10.1017/S0022112010003903
[27] L. N. Trefethen, Spectral Methods in MATLAB (SIAM, Philadelphia, 2000). · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[28] DOI: 10.1017/S0022112091001027 · Zbl 0724.76028 · doi:10.1017/S0022112091001027
[29] F. Bouchut, in Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances, edited by V. Zeitlin (Elsevier, Amsterdam, 2007).
[30] DOI: 10.1175/1520-0485(2003)033<2173:TNEOBU>2.0.CO;2 · doi:10.1175/1520-0485(2003)033<2173:TNEOBU>2.0.CO;2
[31] DOI: 10.1175/2011JAS3540.1 · doi:10.1175/2011JAS3540.1
[32] DOI: 10.1017/S0022112010004891 · Zbl 1225.76069 · doi:10.1017/S0022112010004891
[33] DOI: 10.1063/1.867002 · Zbl 0651.76018 · doi:10.1063/1.867002
[34] DOI: 10.1080/03091920512331328080 · Zbl 1206.86027 · doi:10.1080/03091920512331328080
[35] The localized character of intertially unstable modes was repeatedly discussed in the literature, e.g., Refs. 33, 34, and 15 .
[36] An arbitrary topography may be easily included both in the linear stability analysis and in the nonlinear simulations.
[37] While Re(w)=0 when k=0, we checked that limkRe({\(\omega\)})k .
[38] Note that although we selected a pure barotropically unstable mode for this simulation, it is in the zone of competition between asymmetric inertial and barotropic instability. Arbitrary perturbation with this wavelength will be projected on both inertially and barotropically unstable modes.
[39] Yet, the conditions of realizability of the scenarios observed in our simulations in fully three-dimensional fluid with such stratification remain to be investigated–this was out of the scope of the present paper.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.