×

Evolution of solitary marginal disturbances in baroclinic frontal geostrophic dynamics with dissipation and time-varying background flow. (English) Zbl 1347.76026

Summary: A two-layer frontal geostrophic flow corresponds to a dynamical regime that describes the low-frequency evolution of baroclinic ocean currents with large amplitude deflections of the interface between the layers on length-scales longer than the internal deformation radius within the context of a thin upper layer overlying a dynamically active lower layer. The finite-amplitude evolution of solitary disturbances in baroclinic frontal geostrophic dynamics in the presence of time-varying background flow and dissipation is shown to be governed by a two-equation extension of the unstable nonlinear Schrödinger (UNS) equation with variable coefficients and forcing. The soliton solution of the unperturbed UNS equation corresponds to a saturated isolated coherent anomaly in the baroclinic instability of surface-intensified oceanographic fronts and currents. The adiabatic evolution of the propagating soliton and the uniformly valid first-order perturbation fields are determined using a direct perturbation approach together with phase-averaged conservation relations when both dissipation and time variability are present. It is shown that the soliton amplitude parameter decays exponentially due to the presence of the dissipation but is unaffected by the time variability in the background flow. On the other hand, the soliton translation velocity is unaffected by the dissipation and evolves only in response to the time variability in the background flow. The adiabatic solution for the induced mean flow exhibits a dissipation-generated ‘shelf region’ in the far field behind the soliton, which is removed by solving the initial-value problem.

MSC:

76E20 Stability and instability of geophysical and astrophysical flows
76B25 Solitary waves for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Craik, A.D.D. 1985 Wave interactions and fluid flows. Cambridge, UK: Cambridge University Press. · Zbl 0581.76002
[2] Cushman-Roisin, B. 1986 Frontal geostrophic dynamics. <i>J. Phys. Oceanogr.</i> <b>22</b>, 117–127, (doi:10.1175/1520-0485(1992)022<0117:TLGDPI>2.0.CO;2).
[3] Cushman-Roisin, B., Sutyrin, G.G. & Tang, B. 1992 Two-layer geostrophic dynamics. Part I: governing equations. <i>J. Phys. Oceanogr.</i> <b>22</b>, 758–768, (doi:10.1175/1520-0485(1992)022<0117:TLGDPI>2.0.CO;2).
[4] Gibbon, J.D. & McGuinness, M.J. 1981 Amplitude equations at the critical points of unstable dispersive physical systems. <i>Proc. R. Soc. A</i> <b>377</b>, 185–219, (doi:10.1098/rspa.1981.0121). · Zbl 0476.35054
[5] Gibbon, J.D., James, I.N. & Moroz, I.M. 1979 An example of soliton behavior in a rotating baroclinic fluid. <i>Proc. R. Soc. A</i> <b>367</b>, 219–237, (doi:10.1098/rspa.1979.0084). · Zbl 0423.76016
[6] Grimshaw, R. 1979 Slowly varying solitary waves. I. Korteweg–de Vries equation. <i>Proc. R. Soc. A</i> <b>368</b>, 359–375, (doi:10.1098/rspa.1979.0135). · Zbl 0414.76017
[7] Grimshaw, R. 1979 Slowly varying solitary waves, II. Nonlinear Schrödinger equation. <i>Proc. R. Soc. A</i> <b>368</b>, 377–388, (doi:10.1098/rspa.1979.0136). · Zbl 0416.76014
[8] Ha, S.-J. & Swaters, G.E. 2006 Finite-amplitude baroclinic instability of time-varying abyssal currents. <i>J. Phys. Oceanogr.</i> <b>36</b>, 122–139, (doi:10.1175/JPO2838.1).
[9] Huang, N.-N., Chi, S., Lou, B.L. & Chen, X.J. 2000 A direct theory for the perturbed unstable nonlinear Schrödinger equation. <i>J. Math. Phys.</i> <b>41</b>, 2931–2942, (doi:10.1063/1.533281). · Zbl 0972.35148
[10] Iizuka, T. & Wadati, M. 1990 The Rayleigh–Taylor instability and nonlinear waves. <i>J. Phys. Soc. Jpn.</i> <b>59</b>, 3182–3192, (doi:10.1143/JPSJ.59.3182).
[11] Karsten, R.H. & Swaters, G.E. 1996 A note on the stability theory of buoyancy-driven ocean currents over a sloping bottom. <i>Z. Angew. Math. Phys.</i> <b>47</b>, 28–38, (doi:10.1007/BF00917572). · Zbl 0844.76031
[12] Karsten, R.H. & Swaters, G.E. 2000 Nonlinear effects in two-layer large-amplitude geostrophic dynamics. Part 2. The weak-beta case. <i>J. Fluid. Mech.</i> <b>412</b>, 161–196, (doi:10.1017/S0022112000008272).
[13] Kaup, D.J. & Newell, A.C. 1978 Solitons as particles, oscillators and in slowly changing media: a singular perturbation theory. <i>Proc. R. Soc. A</i> <b>361</b>, 413–446, (doi:10.1098/rspa.1978.0110).
[14] Klein, P. & Pedlosky, J. 1992 The role of dissipation mechanisms in the nonlinear dynamics of unstable baroclinic waves. <i>J. Atmos. Sci.</i> <b>49</b>, 29–48, (doi:10.1175/1520-0469(1992)049<0029:TRODMI>2.0.CO;2).
[15] Knickerbocker, C.J. & Newell, A.C. 1980 Shelves and the Korteweg–de Vries equation. <i>J. Fluid Mech.</i> <b>98</b>, 803–818, (doi:10.1017/S0022112080000407). · Zbl 0437.76020
[16] Kodama, Y. & Ablowitz, M.J. 1980 Perturbations of solitons and solitary waves. <i>Stud. Appl. Math.</i> <b>64</b>, 225–245. · Zbl 0486.76029
[17] McWilliams, J.C. 1984 The emergence of isolated coherent vortices in turbulent flow. <i>J. Fluid Mech.</i> <b>146</b>, 21–43, (doi:10.1017/S0022112084001750).
[18] Mooney, C.J. & Swaters, G.E. 1996 Finite amplitude baroclinic instability of a mesoscale gravity current in a channel. <i>Geophys. Astrophys. Fluid Dyn.</i> <b>82</b>, 173–205, (doi:10.1080/03091929608213634). · Zbl 1181.76072
[19] Pedlosky, J. 1972 Finite amplitude baroclinic wave packets. <i>J. Atmos. Sci.</i> <b>29</b>, 680–686, (doi:10.1175/1520-0469(1972)029<0680:FABWP>2.0.CO;2).
[20] Pedlosky, J. 1987 Geophysical fluid dynamics. New York, NY: Springer. · Zbl 0713.76005
[21] Pedlosky, J. & Thomson, J. 2003 Baroclinic instability of time dependent currents. <i>J. Fluid Mech.</i> <b>490</b>, 189–215, (doi:10.1017/S0022112003005007).
[22] Poulin, F.J., Flierl, G.R. & Pedlosky, J. 2003 Parametric instability in oscillatory shear flow. <i>J. Fluid Mech.</i> <b>481</b>, 329–353, (doi:10.1017/S0022112003004051). · Zbl 1034.76021
[23] Reszka, M. K. 1997 Finite amplitude waves and eddy development on a baroclinically unstable front over a sloping bottom. M.Sc. thesis, University of Alberta, Edmonton.
[24] Reszka, M.K. & Swaters, G.E. 1999 Eddy formation and interaction in a baroclinic frontal geostrophic model. <i>J. Phys. Oceanogr.</i> <b>29</b>, 3025–3042, (doi:10.1175/1520-0485(1999)029<3025:EFAIIA>2.0.CO;2).
[25] Reszka, M.K. & Swaters, G.E. 1999 Numerical investigation of baroclinic instability in the Gaspé current using a frontal geostrophic model. <i>J. Geophys. Res.</i> <b>104</b>, 25685–25696, (doi:10.1029/1999JC900189).
[26] Reszka, M.K. & Swaters, G.E. 2004 Evolution of initially axisymmetric buoyancy jets: a numerical study. <i>J. Fluid Mech.</i> <b>501</b>, 355–377, (doi:10.1017/S0022112003007535). · Zbl 1057.76022
[27] Swaters, G.E. 1993 On the baroclinic dynamics, Hamiltonian formulation and general stability characteristics of density-driven surface currents and fronts over a sloping continental shelf. <i>Phil. Trans. R. Soc. A</i> <b>345</b>, 295–325, (doi:10.1098/rsta.1993.0131). · Zbl 0812.76032
[28] Swaters, G. E. 2000 <i>Introduction to Hamiltonian fluid dynamics and stability theory</i>. Monographs and surveys in pure and applied mathematics. Boca Raton, FL: Chapman & Hall/CRC Press.
[29] Swaters, G.E. 2006 The meridional flow of source-driven abyssal currents in a stratified basin with topography. Part I. Model development and dynamical properties. <i>J. Phys. Oceanogr.</i> <b>36</b>, 335–355, (doi:10.1175/JPO2855.1).
[30] Swaters, G.E. 2007 Perturbations of soliton solutions to the unstable nonlinear Schrödinger and sine-Gordon equations. <i>Stud. Appl. Math.</i> <b>118</b>, 99–116, (doi:10.1111/j.1467-9590.2007.00365.x).
[31] Tan, B. & Liu, S. 1995 Collision interactions of solitons in a baroclinic atmosphere. <i>J. Atmos. Sci.</i> <b>52</b>, 1501–1512, (doi:10.1175/1520-0469(1995)052<1501:CIOSIA>2.0.CO;2).
[32] Tang, B. & Cushman-Roisin, B. 1992 Two-layer geostrophic dynamics. Part II: geostrophic turbulence. <i>J. Phys. Oceanogr.</i> <b>22</b>, 128–138, (doi:10.1175/1520-0485(1992)022<0128:TLGDPI>2.0.CO;2).
[33] Turnbull, M. R. 2006 Finite-amplitude instability of time-varying frontal geostrophic currents. M.Sc. thesis, University of Alberta, Edmonton.
[34] Yajima, N. & Tanaka, M. 1988 Soliton modes in an unstable plasma. <i>Suppl. Prog. Theor. Phys.</i> <b>94</b>, 138–162.
[35] Yajima, N. & Wadati, M. 1990 Soliton solution and its property of unstable nonlinear Schrödinger equation. <i>J. Phys. Soc. Jpn.</i> <b>59</b>, 41–47, (doi:10.1143/JPSJ.59.41).
[36] Yajima, N. & Wadati, M. 1990 Solitons in electron beam plasma. <i>J. Phys. Soc. Jpn.</i> <b>59</b>, 3237–3248, (doi:10.1143/JPSJ.59.3237).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.