×

Near-inertial parametric subharmonic instability. (English) Zbl 1146.76023

Summary: We present new analytic estimates of the rate at which parametric subharmonic instability (PSI) transfers energy to high-vertical-wavenumber near-inertial oscillations. These results are obtained by a heuristic argument which provides insight into the physical mechanism of PSI, and also by a systematic application of the method of multiple time scales to Boussinesq equations linearized about a ‘pump wave’ whose frequency is close to twice the inertial frequency. The multiple-scale approach yields an amplitude equation describing how the \(2f_{0}\)-pump energizes a vertical continuum of near-inertial oscillations. The amplitude equation is solved using two models for the \(2f_{0}\)-pump: (i) an infinite plane internal wave in a medium with uniform buoyancy frequency; (ii) a vertical mode one internal tidal wavetrain in a realistically stratified and bounded ocean. In case (i) analytic expressions for the growth rate of PSI are obtained and validated by a successful comparison with numerical solutions of full Boussinesq equations. In case (ii), numerical solutions of the amplitude equation indicate that the near-inertial disturbances generated by PSI are concentrated below the base of the mixed layer where the velocity of the pump wave train is largest. Based on these examples we conclude that the \(e\)-folding time of PSI in oceanic conditions is of the order of ten days or less.

MSC:

76E20 Stability and instability of geophysical and astrophysical flows
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1175/JPO2882.1 · doi:10.1175/JPO2882.1
[2] DOI: 10.1017/S002211200100550X · Zbl 1040.76064 · doi:10.1017/S002211200100550X
[3] DOI: 10.1029/2000JC900019 · doi:10.1029/2000JC900019
[4] DOI: 10.1029/RG024i003p00493 · doi:10.1029/RG024i003p00493
[5] DOI: 10.1017/S0022112076002735 · Zbl 0344.76030 · doi:10.1017/S0022112076002735
[6] DOI: 10.1256/qj.02.231 · doi:10.1256/qj.02.231
[7] DOI: 10.1357/002224001762674908 · doi:10.1357/002224001762674908
[8] DOI: 10.1029/2005GL023376 · doi:10.1029/2005GL023376
[9] Hibiya, J. Geophys. Res. 103 pp none– (2002)
[10] DOI: 10.1029/JC082i009p01397 · doi:10.1029/JC082i009p01397
[11] DOI: 10.1175/1520-0485(1984)0142.0.CO;2 · doi:10.1175/1520-0485(1984)0142.0.CO;2
[12] DOI: 10.1175/1520-0485(1985)0152.0.CO;2 · doi:10.1175/1520-0485(1985)0152.0.CO;2
[13] DOI: 10.1029/2005GL025105 · doi:10.1029/2005GL025105
[14] DOI: 10.1080/03091929108229035 · doi:10.1080/03091929108229035
[15] DOI: 10.1023/A:1015816515476 · doi:10.1023/A:1015816515476
[16] Drazin, Proc. R. Soc. Lond. 356 pp 411– (1977)
[17] DOI: 10.1017/S0022112095000541 · Zbl 0848.76017 · doi:10.1017/S0022112095000541
[18] DOI: 10.1017/S0022112098002602 · Zbl 0941.76514 · doi:10.1017/S0022112098002602
[19] DOI: 10.1357/0022240973224283 · doi:10.1357/0022240973224283
[20] DOI: 10.1175/1520-0485(1982)0122.0.CO;2 · doi:10.1175/1520-0485(1982)0122.0.CO;2
[21] Simmons, Ocean Modelling 21 pp 126– (2008) · doi:10.1016/j.ocemod.2008.01.002
[22] DOI: 10.1175/1520-0485(1981)0112.0.CO;2 · doi:10.1175/1520-0485(1981)0112.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.