×

Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. (English) Zbl 0892.73061

Summary: A multiple scale finite element model (VCFEM-HOMO) has been developed for elastic-plastic analysis of heterogeneous (porous and composite) materials by combining asymptotic homogenization theory with the Voronoi cell finite element model (VCFEM). VCFEM for microstructural modeling originates from Dirichlet tessellation of representative material elements at sampling points in the structure. Structural modeling is done by the general purpose finite element code ABAQUS, and interfacing with the microscale VCFEM analysis is done through the user subroutine in ABAQUS for material constitutive relation, UMAT. Asymptotic homogenization in UMAT generates macroscopic material parameters for ABAQUS. Following the macroscopic analysis, a local VCFEM analysis is invoked to depict the true evolution of microstructural state variables. Various numerical examples are executed for validating the effectiveness of VCFEM-HOMO, and the effect of size, shape and distribution of heterogeneities on local and global response is examined.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74E05 Inhomogeneity in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type

Software:

ABAQUS; UMAT; VCFEM-HOMO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Christman, T.; Needleman, A.; Suresh, S., An experimental and numerical study of deformation in metal-ceramic composites, Acta Metall. Mater., 37, 3029-3050 (1989)
[2] Hashin, Z.; Strikman, S., A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, 11, 127-140 (1963) · Zbl 0108.36902
[3] Nemat-Nasser, S.; Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials (1993), North-Holland: North-Holland Amsterdam · Zbl 0924.73006
[4] Chen, H. S.; Acrivos, A., The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations, Int. J. Solids Struct., 14, 349-364 (1978) · Zbl 0389.73014
[5] Hill, R., A self consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, 213-222 (1965)
[6] Budiansky, B., On the elastic modulii of some heterogeneous materials, J. Mech. Phys. Solids, 13, 223-227 (1965)
[7] Christensen, R. M.; Lo, K. H., Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, 27, 315-330 (1979) · Zbl 0419.73007
[8] Tandon, G. P.; Weng, G. J., A theory of particle reinforced plasticity, J. Appl. Mech., 55, 126-135 (1988)
[9] Dvorak, G.; Bahei-el-din, Y. A., Plasticity analysis of fibrous composites, J. Appl. Mech., 49, 327-335 (1982) · Zbl 0485.73057
[10] Dvorak, G.; Bahei-el-din, Y. A., A bimodal plasticity theory of fibrous composite materials, Acta Mech., 69, 219-241 (1987) · Zbl 0633.73049
[11] Paley, M.; Aboudi, J., Micromechanical analysis of composites by the generalized cell model, Mech. Mater., 14, 127-139 (1992)
[12] Nemat-Nasser, S.; Iwakuma, T.; Hejazi, M., On composites with periodic structure, Mech. Mater., 1, 239-267 (1982)
[13] Bao, G.; Hutchinson, J. W.; McMeeking, R. M., Plastic reinforcement of ductile matrices against plastic flow and creep, Acta Metallur. Mater., 39, 1871-1882 (1991)
[14] Tvergaard, V., Analysis of tensile properties for a whisker-reinforced metal matrix composite, Acta Metall. Mater., 38, 185-194 (1990)
[15] Benssousan, A.; Lions, J. L.; Papanicoulau, G., Asymptotic Analysis for Periodic Structures (1978), North Holland: North Holland Amsterdam
[16] Sanchez-Palencia, E., Non-homogeneous media and vibration theory, (Lecture notes in Physics, 127 (1980), Springer-Verlag: Springer-Verlag Berlin Heidelberg) · Zbl 0432.70002
[17] Toledano, A.; Murakami, H., A high order mixture model for periodic particulate composites, Int. J. Solids. Struct., 23, 7, 989-1002 (1987) · Zbl 0618.73014
[18] Guedes, J. M.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Engrg., 83, 143-198 (1991) · Zbl 0737.73008
[19] Suquet, P., Local and global aspects in the mathematical theory of plasticity, (Sawczuk, A.; Bianchi, G., Plasticity Today—Modeling Methods and Applications (1985), Elsevier: Elsevier London) · Zbl 0556.73036
[20] Guedes, J. M., Non-linear computational model for composite material using homogenization, (Ph.D. Dissertation (1990), University of Michigan: University of Michigan MI)
[21] Cheng, C.-H., Modeling of the elasto-plastic behavior for composite materials using homogenization method, (Ph.D. Dissertation (1992), University of Michigan: University of Michigan MI)
[22] Parton, V. Z.; Kudryavtsev, B. A., Engineering Mechanics of Composite Structure (1993), CRC Press: CRC Press Boca Raton, FL
[23] Hollister, S. J.; Kikuchi, N., A comparison of homogenization and standard mechanics analyses for periodic porous composites, Comput. Mech., 10, 73-95 (1992) · Zbl 0787.73008
[24] Bakhvalov, N. S.; Panasenko, G. P., Homogenization in periodic media, (Mathematical Problems of the Mechanics of Composite Materials (1984), Nauka: Nauka Moscow) · Zbl 0607.73009
[25] Devries, F.; Dumontet, H.; Duvant, G.; Lene, F., Homogenization of damage for composite structures, Int. J. Numer. Methods Engrg., 27, 285-298 (1989) · Zbl 0709.73059
[26] Ghosh, S.; Moorthy, S., Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method, Comput. Methods Appl. Mech. Engrg., 121, 373-409 (1995) · Zbl 0853.73065
[27] S. Moorthy and S. Ghosh, A model for analysis of arbitrary composite and porous microstructures with Voronoi cell finite elements, Int. J. Numer. Mech. Engrg., in press.; S. Moorthy and S. Ghosh, A model for analysis of arbitrary composite and porous microstructures with Voronoi cell finite elements, Int. J. Numer. Mech. Engrg., in press. · Zbl 0885.73085
[28] Ghosh, S.; Lee, K.; Moorthy, S., Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method, Int. J. Solids Struct., 32, 1, 27-62 (1995) · Zbl 0865.73060
[29] Ghosh, S.; Liu, Y., Voronoi cell finite element method for micropolar thermo-elastic heterogeneous materials, Int. J. Numer. Methods Engrg., 38, 8, 1361-1398 (1995) · Zbl 0823.73066
[30] Ghosh, S.; Mukhopadhyay, S. N., A two dimensional automatic mesh generator for finite element analysis of random composites, Comput. Struct., 41, 245-256 (1991) · Zbl 0850.73292
[31] ABAQUS, (Standard User’s Manual, Version 5.4 (1994), Hibbit Karlsson and Sorensen Inc.)
[32] Suquet, P., Elements of homogenization theory for inelastic solid mechanics, (Sanchez-Palencia, E.; Zaoui, A., Homogenization Techniques for Composite Media (1987), Springer-Verlag: Springer-Verlag New York), 194-278
[33] Pian, T. H.H., Derivation of element stiffness matrices by assumed stress distribution, AIAA J., 2, 1333-1336 (1964)
[34] Atluri, S. N., On the hybrid finite element model for incremental analysis of large deformation problems, Int. J. Solids Struct., 9, 1177-1191 (1973) · Zbl 0265.73037
[35] Atluri, S. N., On some new general and complimentary energy theorems for the rate problems in finite strain, classical elastoplasticity, J. Struct. Mech., 8, 1, 61-92 (1980)
[36] Tong, P.; Pian, T. H.H.; Lasry, S. J., A hybrid-element approach to crack problems in plane elasticity, Int. J. Numer. Methods Engrg., 7, 197-308 (1973) · Zbl 0264.73113
[37] Piltner, R., Special finite elements with holes and internal cracks, Int. J. Numer. Methods Engrg., 21, 197-308 (1973)
[38] Tvergaard, V., Influence of voids on shear band instability under plane strain conditions, Int. J. Fracture, 17, 389-407 (1981)
[39] Tvergaard, V., Material failure by void coalescence in localized shear bands, Int. J. Solids Struct., 18, 659-672 (1982) · Zbl 0486.73096
[40] Aravas, N., On the numerical integration of a class of pressure-dependent plasticity models, Int. J. Numer. Methods Engrg., 24, 1395-1416 (1987) · Zbl 0613.73029
[41] Zhao, Y. H.; Weng, G. J., Theory of plasticity for inclusion and fiber-reinforced composite, (Weng, G. J.; Taya, M.; Abe, H., Micromechanics and Inhomogeneity, The Toshio Mura Anniversary Volume (1989), Springer-Verlag: Springer-Verlag Berlin), 599-622
[42] Adams, D. F., Inelastic analysis of a unidirectional composite subjected to transverse normal loading, J. Comput. Mater., 4, 310-328 (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.