×

Stochastic elastic-plastic finite elements. (English) Zbl 1225.74108

Summary: A computational framework has been developed for simulations of the behavior of solids and structures made of stochastic elastic – plastic materials. Uncertain elastic – plastic material properties are modeled as random fields, which appear as the coefficient term in the governing partial differential equation of mechanics. A spectral stochastic elastic – plastic finite element method with Fokker – Planck – Kolmogorov equation based probabilistic constitutive integrator is proposed for solution of this non-linear (elastic – plastic) partial differential equation with stochastic coefficient. To this end, the random field material properties are discretized, in both spatial and stochastic dimension, into finite numbers of independent basic random variables, using Karhunen – Loève expansion. Those random variables are then propagated through the elastic – plastic constitutive rate equation using Fokker – Planck – Kolmogorov equation approach, to obtain the evolutionary material properties, as the material plastifies. The unknown displacement (solution) random field is then assembled - using polynomial chaos - as a function of known basic random variables and unknown deterministic coefficients, which are obtained by minimizing the error of finite representation, by Galerkin technique.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Soize, C., The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions (1994), World Scientific: World Scientific Singapore · Zbl 0807.60072
[2] Langtangen, H., A general numerical solution method for Fokker-Planck equations with application to structural reliability, Probabilist. Engrg. Mech., 6, 33-48 (1991)
[3] Masud, A.; Bergman, L. A., Application of multi-scale finite element methods to the solution of the Fokker-Planck equation, Comput. Methods Appl. Mech. Engrg., 194, 1513-1526 (2005) · Zbl 1136.82359
[4] Hopf, E., Statistical hydromechanics and functional calculus, J. Ration. Mech. Anal., 1, 87-123 (1952) · Zbl 0049.41704
[5] Lee, L. C., Wave propagation in a random medium: a complete set of the moment equations with different wavenumbers, J. Math. Phys., 15, 1431-1435 (1974) · Zbl 0287.60110
[6] Schüeller, G. I., A state-of-the-art report on computational stochastic mechanics, Probabilist. Engrg. Mech., 12, 197-321 (1997)
[7] Paice, G. M.; Griffiths, D. V.; Fenton, G. A., Finite element modeling of settlement on spatially random soil, J. Geotech. Engrg., 122, 777-779 (1996)
[8] Popescu, R.; Prevost, J. H.; Deodatis, G., Effects of spatial variability on soil liquefaction: some design recommendations, Geotechnique, 47, 1019-1036 (1997)
[9] Mellah, R.; Auvinet, G.; Masrouri, F., Stochastic finite element method applied to non-linear analysis of embankments, Probabilist. Engrg. Mech., 15, 251-259 (2000) · Zbl 0953.74609
[10] De Lima, B. S.L. P.; Teixeira, E. C.; Ebecken, N. F.F., Probabilistic and possibilistic methods for the elastoplastic analysis of soils, Adv. Engrg. Softw., 132, 569-585 (2001) · Zbl 0972.68531
[11] Koutsourelakis, S.; Prevost, J. H.; Deodatis, G., Risk assessment of an interacting structure-soil system due to liquefaction, Earthq. Engrg. Struct. Dyn., 31, 851-879 (2002)
[12] Griffiths, D. V.; Fenton, G. A.; Manoharan, N., Bearing capacity of rough rigid strip footing on cohesive soil: probabilistic study, J. Geotech. Geoenviron. Engrg. ASCE, 128, 743-755 (2002)
[13] A. Nobahar, Effects of soil spatial variability on soil-structure interaction, Doctoral Dissertation, Memorial University, St. John’s, NL, 2003.; A. Nobahar, Effects of soil spatial variability on soil-structure interaction, Doctoral Dissertation, Memorial University, St. John’s, NL, 2003.
[14] Fenton, G. A.; Griffiths, D. V., Bearing capacity prediction of spatially random \(c\)−\(φ\) soil, Can. Geotech. J., 40, 54-65 (2003)
[15] Fenton, G. A.; Griffiths, D. V., Three-dimensional probabilistic foundation settlement, J. Geotech. Geoenviron. Engrg. ASCE, 131, 232-239 (2005)
[16] Kleiber, M.; Hien, T. D., The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation (1992), John Wiley and Sons: John Wiley and Sons Baffins Lane, Chichester, West Sussex PO19 1UD, England · Zbl 0902.73004
[17] Der Kiureghian, A.; Ke, B. J., The stochastic finite element method in structural reliability, J. Probabilist. Engrg. Mech., 3, 83-91 (1988)
[18] Gutierrez, M. A.; De Borst, R., Numerical analysis of localization using a viscoplastic regularizations: influence of stochastic material defects, Int. J. Numer. Methods Engrg., 44, 1823-1841 (1999) · Zbl 0927.74068
[19] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (1991), Springer-Verlag, (Reissued by Dover Publications, 2003) · Zbl 0953.74608
[20] A. Keese, H.G. Matthies, Efficient solvers for non-linear stochastic problem, in: H.A. Mang, F.G. Rammmerstorfer, J. Eberhardsteiner (Eds.), Proceedings of the Fifth World Congress on Computational Mechanics, July 7-12, 2002, Vienna, Austria, 2002. <http://wccm.tuwien.ac.at/publications/Papers/fp81007.pdf>; A. Keese, H.G. Matthies, Efficient solvers for non-linear stochastic problem, in: H.A. Mang, F.G. Rammmerstorfer, J. Eberhardsteiner (Eds.), Proceedings of the Fifth World Congress on Computational Mechanics, July 7-12, 2002, Vienna, Austria, 2002. <http://wccm.tuwien.ac.at/publications/Papers/fp81007.pdf> · Zbl 1435.65019
[21] Xiu, D.; Karniadakis, G. E., A new stochastic approach to transient heat conduction modeling with uncertainty, Int. J. Heat Mass Transfer, 46, 4681-4693 (2003) · Zbl 1038.80003
[22] Debusschere, B. J.; Najm, H. N.; Matta, A.; Knio, O. M.; Ghanem, R. G., Protein labeling reactions in electrochemical microchannel flow: numerical simulation and uncertainty propagation, Phys. Fluids, 15, 2238-2250 (2003) · Zbl 1186.76133
[23] Anders, M.; Hori, M., Three-dimensional stochastic finite element method for elasto-plastic bodies, Int. J. Numer. Methods Engrg., 51, 449-478 (2000) · Zbl 1015.74055
[24] Matthies, H. G.; Brenner, C. E.; Bucher, C. G.; Soares, C. G., Uncertainties in probabilistic numerical analysis of structures and solids – stochastic finite elements, Struct. Saf., 19, 283-336 (1997)
[25] Stefanou, G., The stochastic finite element method: past, present and future, Comput. Methods Appl. Mech. Engrg., 198, 1031-1051 (2009) · Zbl 1229.74140
[26] Deb, M. K.; Babuska, I. M.; Oden, J. T., Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Engrg., 190, 6359-6372 (2001) · Zbl 1075.65006
[27] Babuska, I.; Chatzipantelidis, P., On solving elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 191, 4093-4122 (2002) · Zbl 1019.65010
[28] Ghanem, R. G., Ingredients for a general purpose stochastic finite elements implementation, Comput. Methods Appl. Mech. Engrg., 168, 19-34 (1999) · Zbl 0943.65008
[29] Soize, C.; Ghanem, R. G., Reduced chaos decomposition with random coefficients of vector-valued random variables and random fields, Comput. Methods Appl. Mech. Engrg., 198, 1926-1934 (2009) · Zbl 1227.65010
[30] Liu, P. L.; Der Kiureghian, A., A finite element reliability of geometrically nonlinear uncertain structures, J. Engrg. Mech. ASCE, 117, 1806-1825 (1991)
[31] Keese, A., A Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements), Scientific Computing 2003-2006 (2003), Department of Mathematics and Computer Science, Technical University of Braunschweig: Department of Mathematics and Computer Science, Technical University of Braunschweig Brunswick, Germany
[32] Anders, M.; Hori, M., Stochastic finite element method for elasto-plastic body, Int. J. Numer. Methods Engrg., 46, 1897-1916 (1999) · Zbl 0967.74058
[33] Kavvas, M. L., Nonlinear hydrologic processes: conservation equations for determining their means and probability distributions, J. Hydrol. Engrg., 8, 44-53 (2003)
[34] B. Sudret, A. Der Kiureghian, Stochastic finite element methods and reliability: a state of the art report, Technical Report UCB/SEMM-2000/08, University of California, Berkeley, 2000.; B. Sudret, A. Der Kiureghian, Stochastic finite element methods and reliability: a state of the art report, Technical Report UCB/SEMM-2000/08, University of California, Berkeley, 2000.
[35] Baecher, G. B.; Christian, J. T., Reliability and Statistics in Geotechnical Engineering (2003), Wiley: Wiley West Sussex PO19 8SQ, England
[36] Jeremić, B.; Sett, K.; Kavvas, M. L., Probabilistic elasto-plasticity: formulation in 1-D, Acta Geotech., 2, 197-210 (2007)
[37] Sett, K.; Jeremić, B.; Kavvas, M. L., The role of nonlinear hardening/softening in probabilistic elasto-plasticity, Int. J. Numer. Anal. Methods Geomech., 31, 953-975 (2007) · Zbl 1196.74015
[38] Sett, K.; Jeremić, B.; Kavvas, M. L., Probabilistic elasto-plasticity: solution and verification in 1-D, Acta Geotech., 2, 211-220 (2007)
[39] Jeremić, B.; Sett, K., On probabilistic yielding of materials, Commun. Numer. Methods Engrg., 25, 291-300 (2009) · Zbl 1157.74006
[40] Sett, K.; Jeremić, B., Probabilistic yielding and cyclic behavior of geomaterials, Int. J. Numer. Anal. Methods Geomech., 34, 1541-1559 (2010) · Zbl 1273.74306
[41] K. Sett, Probabilistic elasto-plasticity and its application in finite element simulations of stochastic elastic-plastic boundary value problems, Doctoral Dissertation, University of California, Davis, CA, 2007.; K. Sett, Probabilistic elasto-plasticity and its application in finite element simulations of stochastic elastic-plastic boundary value problems, Doctoral Dissertation, University of California, Davis, CA, 2007.
[42] Karhunen, K., Über lineare methoden in der wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fenn. Ser. A1. Math. Phys., 1-79 (1947) · Zbl 0030.16502
[43] M. Loève, Fonctions aléatoires du second ordre, Supplément to P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948.; M. Loève, Fonctions aléatoires du second ordre, Supplément to P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948.
[44] Wiener, N., The homogeneous chaos, Am. J. Math., 60, 897-936 (1938) · JFM 64.0887.02
[45] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method. The Finite Element Method, The Basis, vol. 1 (2000), Butterwort-Heinemann: Butterwort-Heinemann Oxford · Zbl 0991.74002
[46] Bathe, K.-J., Finite Element Procedures (1996), Prentice Hall: Prentice Hall New Jersey
[47] Wolfram Research Inc., Mathematica Version 5.0 (2003), Wolfram Research Inc.: Wolfram Research Inc. Champaign, Illonois
[48] Levenberg, K., A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164-168 (1944) · Zbl 0063.03501
[49] Marquardt, D., An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11, 431-441 (1963) · Zbl 0112.10505
[50] Rosenblatt, M., Remarks on a multivariate transformation, Ann. Math. Stat., 23, 470-472 (1952) · Zbl 0047.13104
[51] Melchers, R. E., Structural Reliability Analysis and Prediction (1999), John Wiley and Sons: John Wiley and Sons Chichester, ISBN: 10: 0471987719
[52] Grigoriu, M., Stochastic Calculus: Applications in Science and Engineering (2002), Birkhauser: Birkhauser Boston, ISBN: 10: 0817642420 · Zbl 1015.60001
[53] Ghanem, R., Stochastic finite elements with multiple random non-gaussian properties, J. Engrg. Mech. ASCE, 125, 26-40 (1999)
[54] Sakamoto, S.; Ghanem, R., Polynomial chaos decomposition for the simulation of non-gaussian non-stationary stochastic processes, J. Engrg. Mech., 128, 190-201 (2002)
[55] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619-644 (2002) · Zbl 1014.65004
[56] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., 187, 137-167 (2003) · Zbl 1047.76111
[57] Foo, J.; Yosibash, Z.; Karkiadakis, G. E., Stochastic simulation of riser-sections with uncertain measured pressure loads and/or uncertain material properties, Comput. Methods Appl. Mech. Engrg., 196, 4250-4271 (2007) · Zbl 1173.74464
[58] Lucor, D.; Su, C.-H.; Karniadakis, G. E., Generalized polynomial chaos and random oscillators, Int. J. Numer. Methods Engrg., 60, 571-596 (2004) · Zbl 1060.70515
[59] Fenton, G. A., Estimation of stochastic soil models, J. Geotech. Geoenviron. Engrg. ASCE, 125, 470-485 (1999)
[60] Fenton, G. A., Estimation of stochastic soil models, J. Geotech. Geoenviron. Engrg. ASCE, 125, 486-498 (1999)
[61] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK Users’ Guide (1999), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0934.65030
[62] Davis, T. A., Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw., 30, 196-199 (2004) · Zbl 1072.65037
[63] Hindmarsh, A. C.; Brown, P. N.; Grant, K. E.; Lee, S. L.; Serban, R.; Shumaker, D. E.; Woodward, C. S., SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, ACM Trans. Math. Softw., 31, 363-396 (2005) · Zbl 1136.65329
[64] J.J. Moré, B.S. Garbow, K.E. Hillstrom, User guide for MINPACK-1, Technical Report ANL-8-74, Argonne National Laboratory, Argonne, IL, 1980. C translation by Steve Moshier. Code Available at: <https://sourceforge.net/projects/lmfit>; J.J. Moré, B.S. Garbow, K.E. Hillstrom, User guide for MINPACK-1, Technical Report ANL-8-74, Argonne National Laboratory, Argonne, IL, 1980. C translation by Steve Moshier. Code Available at: <https://sourceforge.net/projects/lmfit>
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.