×

Liquefaction phenomena in fluid-saturated soil based on the theory of porous media and the framework of elasto-plasticity. (English) Zbl 1297.74073

Summary: Liquefaction phenomena are encountered in many engineering applications, especially, in geomechanics and earthquake engineering. Drawing our attention to fluid-saturated granular materials with heterogeneous microstructures, the modelling is carried out within a continuum-mechanical framework by exploiting the macroscopic Theory of Porous Media (TPM) together with thermodynamically consistent constitutive equations. In this regard, the solid skeleton of the water-saturated soil is described as an elasto-plastic material with isotropic hardening and a stress-dependent failure surface. The underlying equations are discretised and implemented into the coupled porous-media finite-element solver PANDAS and linked to the commercial finite-element package Abaqus via a general interface. This coupling allows the definition of complex initial-boundary-value problems through Abaqus, thereby using the sophisticated material models of PANDAS. To reveal the capabilities of this approach, two types of simulations have been carried out. At first, in order to get a detailed understanding of the porous-media soil model under transient loading conditions, a cyclic torsion benchmark is computed. In a second step, specific liquefaction phenomena are addressed, where the underlying initial-boundary-value problems are inspired by practically relevant scenarios.

MSC:

74L10 Soil and rock mechanics
76S05 Flows in porous media; filtration; seepage
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

PANDAS; ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Biot, J. Acoust. Soc. Am. 28 pp 168– (1956) · doi:10.1121/1.1908239
[2] Bowen, Int. J. Eng. Sc. 18 pp 1129– (1980) · Zbl 0446.73005 · doi:10.1016/0020-7225(80)90114-7
[3] Bowen, Int. J. Eng. Sci. 20 pp 697– (1982) · Zbl 0484.76102 · doi:10.1016/0020-7225(82)90082-9
[4] F. Brezzi M. Fortin
[5] Casagrande, J. Boston Soc. Civil Eng. 23 pp 13– (1936)
[6] Castro, J. Geotech. Eng. Div. ASCE 101 pp 551– (1975)
[7] Castro, J. Geotech. Eng. Div. ASCE 103 pp 501– (1977)
[8] R.W. Day
[9] R. De Boer
[10] De Boer, Acta Mech. 83 pp 77– (1990) · Zbl 0724.73195 · doi:10.1007/BF01174734
[11] Ehlers, Arch. Appl. Mech. 65 pp 246– (1995) · Zbl 0822.73061 · doi:10.1007/BF00805464
[12] W. Ehlers 3 86
[13] W. Ehlers O. Avci
[14] Ehlers, Comput. Methods Appl. Mech. Eng. 193 pp 2885– (2004) · Zbl 1067.74543 · doi:10.1016/j.cma.2003.09.026
[15] Ehlers, Arch. Appl. Mech. 77 pp 911– (2012) · Zbl 1161.74352 · doi:10.1007/s00419-007-0162-9
[16] Y. Heider
[17] C.-H. Lin R.I. Borja
[18] Manzari, Geotech. 47(2) pp 255– (1997) · doi:10.1680/geot.1997.47.2.255
[19] Markert, Int. J. Numer. Methods Eng. 82 pp 1341– (2010)
[20] Perzyna, Adv. Appl. Mech. 9 pp 243– (1966) · doi:10.1016/S0065-2156(08)70009-7
[21] Prevost, Soil Dyn. Mech. Eng. 20 pp 3– (1982)
[22] Prevost, Soil Dyn. Earthq. Eng. 4 pp 9– (1985)
[23] Popescua, Soil Dyn. Earthq. Eng. 26 pp 648– (2006) · doi:10.1016/j.soildyn.2006.01.015
[24] P.K. Robertson C.E. Fear
[25] K.H. Roscoe J.B. Burland
[26] Roscoe, Geotech. 8 pp 22– (1958) · doi:10.1680/geot.1958.8.1.22
[27] A.N. Schofield C.P. Wroth
[28] Schenke, Proc. Appl. Math. Mech. 11 pp 431– (2011) · doi:10.1002/pamm.201110207
[29] C. Truesdell
[30] Wichtmann, Soil Dyn. Earthq. Eng. 27 pp 42– (2006) · doi:10.1016/j.soildyn.2006.04.001
[31] O.C. Zienkiewicz P. Bettes
[32] O.C. Zienkiewicz A.H.C. Chan M. Pastor B.A. Schrefler
[33] Zienkiewicz, Int. J. Numer. Anal. Methods 2 pp 381– (1978) · Zbl 0384.73070 · doi:10.1002/nag.1610020407
[34] Zienkiewicz, Int. J. Numer. Anal. Methods Eng. 8 pp 71– (1984) · Zbl 0526.73099 · doi:10.1002/nag.1610080106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.