×

An accurate elasto-plastic frictional tangential force-displacement model for granular-flow simulations: displacement-driven formulation. (English) Zbl 1146.74010

The authors give an example of an elasto-plastic frictional tangential force-displacement model for two colliding spheres. The model accounts for both elastic and plastic deformation. An additive decomposition of the contact radius as strain in the continuum theory of elastoplasticity is given. A correction of the radius of curvature is done for the effect of permanent indentation after impact. Also a correction of elastic moduli is done. Numerical examples show that the present elasto-plastic frictional model produces accurate results on both the tangential force and energy dissipation for a wide range of loading cases.

MSC:

74E20 Granularity
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74M15 Contact in solid mechanics
74M10 Friction in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Vu-Quoc, L.; Lesburg, L.; Zhang, X., An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation, Journal of Computational Physics, 196, 1, 298-326 (2004) · Zbl 1115.76416
[2] Vu-Quoc, L.; Zhang, X., An elasto-plastic contact force-displacement model in the normal direction: displacement-driven version, Proceedings of the Royal Society of London Series A, 455, 4013-4044 (1991) · Zbl 0984.74057
[3] Smith, G. M.; Davies, T. R.; McSaveney, M. J.; Bell, D. H., The Acheron rock avalanche Canterbury, New Zealand – morphology and dynamics, Landslides, 3, 1, 62-72 (2006)
[4] Kelfoun, K.; Druitt, T. H., Numerical modeling of the emplacement of Socompa rock avalanche, Chile, Journal of Geophysical Research-Solid Earth, 110, B12 (2005), article no.B12202
[5] Barbolini, M.; Biancardi, A.; Cappabianca, F.; Natale, L.; Pagliardi, M., Laboratory study of erosion processes in snow avalanches, Cold Regions Science and Technology, 43, 1-2, 1-9 (2005)
[6] Lajeunesse, E.; Quantin, C.; Allemand, P.; Delacourt, C., New insights on the runout of large landslides in the Valles-Marineris canyons, Mars, Geophysical Research Letters, 33, 4 (2006), article no.L04403
[7] Salatino, P., Assessment of motion-induced fluidization of dense pyroclastic gravity currents, Annals of Geophysics, 48, 4-5, 843-852 (2005)
[8] Cassar, C.; Nicolas, M.; Pouliquen, O., Submarine granular flows down inclined planes, Physics of Fluids, 17, 10 (2005), article no.103301 · Zbl 1188.76024
[9] Mullin, T., Mixing and de-mixing, Science, 295, 5561, 1851 (2002)
[10] K. Chang, Secrets of the singing sand dunes, New York Times, 2006. Tue, 25 Jul, Science-Times section, p.F1. Web address: nytimes.com/science; K. Chang, Secrets of the singing sand dunes, New York Times, 2006. Tue, 25 Jul, Science-Times section, p.F1. Web address: nytimes.com/science
[11] Holden, C., Sands sing for France, Science, 300, 47 (2003)
[12] Andreotti, B., The song of dunes as a wave-particle mode locking, Physical Review Letters, 93, 23 (2004), article no.238001
[13] Douady, S.; Manning, A.; Hersen, P.; Elbelrhiti, H.; Protiere, S.; Daerr, A.; Kabbachi, B., Song of the dunes as a self-synchronized instrument, Physical Review Letters, 97, 1 (2006), article no.018002
[14] Jop, P.; Forterre, Y.; Pouliquen, O., A constitutive law for dense granular flows, Nature, 441, Jun, 727-730 (2006)
[15] Vu-Quoc, L.; Zhang, X.; Walton, O. R., 3-D discrete-element method for dry granular flows of ellipsoidal particles, Computer Methods in Applied Mechanics and Engineering, 187, 3, 483-528 (2000) · Zbl 0976.76063
[16] Schutyser, M. A.I.; Briels, W. J.; Rinzema, A.; Boom, R. M., Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation, Biotechnology and Bioengineering, 84, 1, 29-39 (2003), Oct 5
[17] Hlungwani, O.; Rikhotso, J.; Dong, H.; Moys, M. H., Further validation of DEM modeling of milling: effects of liner profile and mill speed, Minerals Engineering, 16, 10, 993-998 (2003)
[18] Tijskens, E.; Ramon, H.; De Baerdemaeker, J., Discrete element modelling for process simulation in agriculture, Journal of Sound and Vibration, 266, 3, 493-514 (2003), Sep 18
[19] Dintwa, E.; Van Zeebroeck, M.; Tijskens, E.; Ramon, H., Determination of parameters of a tangential contact force model for viscoelastic spheroids (fruits) using a rheometer device, Biosystems Engineering, 91, 3, 321-327 (2005)
[20] Di Renzo, A.; Di Maio, F. P., Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes, Chemical Engineering Science, 59, 3, 525-541 (2004)
[21] Raji, A. O.; Favier, J. F., Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. I: Theory, model development and validation, Journal of Food Engineering, 64, 3, 359-371 (2004)
[22] Fillot, N.; Iordanoff, I.; Berthier, Y., A granular dynamic model for the degradation of material, Journal of Tribology - Transactions of the ASME, 126, 3, 606-614 (2004)
[23] Harstad, K.; Bellan, J., On possible release of microbe-containing particulates from a Mars lander spacecraft, Planetary and Space Science, 54, 3, 273-286 (2006)
[24] Zhang, X.; Vu-Quoc, L., Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions, International Journal of Impact Engineering, 27, 3, 317-341 (2002)
[25] Zhang, X.; Vu-Quoc, L., Simulation of chute flow of soybeans using an improved tangential force-displacement model, Mechanics of Materials, 32, 2, 115-129 (2000)
[26] Vu-Quoc, L.; Zhang, X.; Lesburg, L., A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven formulation, Journal of Applied Mechanics - Transactions of the ASME, 67, 2, 363-371 (2000) · Zbl 1110.74732
[27] Plantard, G.; Papini, M., Mechanical and electrical behaviors of polymer particles. Experimental study of the contact area between two particles. Experimental validation of a numerical model, Granular Matter, 7, 1, 1-12 (2005)
[28] Hertz, H., Über die Berührung fester elastischer Körper (on the contact of elastic solids), Journal fur die Reine und Angewandte Mathematik, 92, 156-171 (1882) · JFM 14.0807.01
[29] Johnson, K. L., Contact Mechanics (1985), Cambridge University Press: Cambridge University Press New York · Zbl 0599.73108
[30] Mindlin, R. D.; Deresiewicz, H., Elastic spheres in contact under varying oblique forces, ASME Journal of Applied Mechanics, 20, September, 327-344 (1953) · Zbl 0051.41202
[31] Vu-Quoc, L.; Zhang, X.; Lesburg, L., Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres, International Journal of Solids and Structures, 38, 36-37, 6455-6489 (2001) · Zbl 1090.74643
[32] Vu-Quoc, L.; Zhang, X., An accurate and efficient tangential force-displacement model for elastic-frictional contact in particle-flow simulations, Mechanics of Materials, 31, 235-269 (1999)
[33] Jager, J., Some comments on recent generalizations of Cattaneo-Mindlin, International Journal of Solids and Structures, 38, 14, 2453-2457 (2001) · Zbl 1052.74563
[34] Jager, J., New analytical and numerical results for two-dimensional contact profiles, International Journal of Solids and Structures, 39, 4, 959-972 (2002) · Zbl 1090.74640
[35] Walton, Otis R.; Braun, Robert L., Viscosity, granular-temperature and stress calculations for shearing assemblies of inelastic, frictional disks, Journal of Rheology, 30, 5, 949-980 (1986)
[36] Walton, Otis R., Numerical simulation of inelastic frictional particle-particle interactions, (Roco, M. C., Particulate Two-Phase Flow (1993), Butterworth-Heinemann: Butterworth-Heinemann Stoneham, MA), 884-911, (Chapter 25)
[37] Smith, Charles E.; Liu, Pao-Pao, Coefficients of restitution, ASME Journal of Applied Mechanics, 59, 963-969 (1992) · Zbl 0825.70072
[38] Kangur, Kh. F.; Kleis, I. R., Experimental and theoretical determination of the coefficient of velocity restitution upon impact, Mechanics of Solids, 23, 5, 182-185 (1988)
[39] Goldsmith, W., Impact: The Theory and Physical Behaviour of Colliding Solids (1960), Edward Arnold Ltd.: Edward Arnold Ltd. London · Zbl 0122.42501
[40] Zhang, X.; Vu-Quoc, L., A method to extract the mechanical properties of particles in collision based on a new elasto-plastic normal force-displacement model, Mechanics of Materials, 34, 12, 779-794 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.