×

Efficient numerical schemes for viscoplastic avalanches. I: The 1D case. (English) Zbl 1349.76329

Summary: This paper deals with the numerical resolution of a shallow water viscoplastic flow model. Viscoplastic materials are characterized by the existence of a yield stress: below a certain critical threshold in the imposed stress, there is no deformation and the material behaves like a rigid solid, but when that yield value is exceeded, the material flows like a fluid. In the context of avalanches, it means that after going down a slope, the material can stop and its free surface has a non-trivial shape, as opposed to the case of water (Newtonian fluid). The model involves variational inequalities associated with the yield threshold: finite-volume schemes are used together with duality methods (namely Augmented Lagrangian and Bermúdez-Moreno) to discretize the problem. To be able to accurately simulate the stopping behavior of the avalanche, new schemes need to be designed, involving the classical notion of well-balancing. In the present context, it needs to be extended to take into account the viscoplastic nature of the material as well as general bottoms with wet/dry fronts which are encountered in geophysical geometries. We derived such schemes and numerical experiments are presented to show their performances.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acary-Robert, C.; Fernández-Nieto, E.; Narbona-Reina, G.; Vigneaux, P., A well-balanced finite volume-augmented lagrangian method for an integrated Herschel-Bulkley model, J. Sci. Comput., 53, 608-641 (2012) · Zbl 1426.76327
[2] Ancey, C., Plasticity and geophysical flows: A review, J. Non-Newton. Fluid Mech., 142, 4-35 (2007) · Zbl 1143.76315
[3] Balmforth, N. J.; Burbidge, A. S.; Craster, R. V.; Salzig, J.; Shen, A., Visco-plastic models of isothermal lava domes, J. Fluid Mech., 403, 37-65 (2000) · Zbl 0957.76003
[4] Bermúdez, A.; Moreno, C., Duality methods for solving variational inequalities, Comput. Math. Appl., 7, 43-58 (1981) · Zbl 0456.65036
[5] Bermúdez, A.; Vázquez Cendón, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, 23, 1049-1071 (1994) · Zbl 0816.76052
[6] Boffi, D., Finite element approximation of eigenvalue problems, Acta Numer., 19, 1-120 (2010) · Zbl 1242.65110
[7] Bouchut, F., Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources (2004), Birkhäuser · Zbl 1086.65091
[8] Bresch, D.; Fernandez-Nieto, E. D.; Ionescu, I. R.; Vigneaux, P., Augmented Lagrangian method and compressible visco-plastic flows: Applications to shallow dense avalanches, (Galdi, G. P.; etal., New Directions in Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics (2010), Birkhäuser: Birkhäuser Basel), 57-89 · Zbl 1206.35191
[9] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (1973), North-Holland Publishing Co. · Zbl 0252.47055
[10] Castro, M.; Ferreiro Ferreiro, A.; García-Rodríguez, J.; González-Vida, J.; Macías, J.; Parés, C.; Elena Vázquez-Cendón, M., The numerical treatment of wet/dry fronts in shallow flows: Application to one-layer and two-layer systems, Math. Comput. Model., 42, 3-4, 419-439 (2005) · Zbl 1121.76008
[11] Castro, M. J.; Gonzáles-Vida, J. M.; Parés, C., Numerical treatment of wet/dry fronts in shallow flows with a modified roe scheme, Math. Models Methods Appl. Sci., 16, 6, 897-931 (2006) · Zbl 1136.65330
[12] Chacón, T.; Castro, M. J.; Fernández-Nieto, E. D.; Parés, C., On well-balanced finite volume methods for non-conservative non-homogeneous hyperbolic systems, SIAM J. Sci. Comput., 29, 3, 1093-1126 (2007) · Zbl 1148.65065
[13] Delbos, F.; Gilbert, J. C.; Glowinski, R.; Sinoquet, D., Constrained optimization in seismic reflection tomography: a Gauss-Newton augmented Lagrangian approach, Geophys. J. Int., 164, 3, 670-684 (2006)
[14] Dent, J.; Lang, T., A biviscous modified Bingham model of snow avalanche motion, Ann. Glaciol., 4, 42-46 (1983)
[15] Duvaut, G.; Lions, J. L., Inequalities in Mechanics and Physics (1976), Springer-Verlag · Zbl 0331.35002
[16] Ekeland, I.; Témam, R., Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28 (1999), Society for Industrial and Applied Mathematics (SIAM) · Zbl 0939.49002
[17] Fernández-Nieto, E. D.; Noble, P.; Vila, J. P., Shallow water equations for non-newtonian fluids, J. Non-Newton. Fluid Mech., 165, 13-14, 712-732 (2010) · Zbl 1274.76023
[18] Fortin, M.; Glowinski, R., Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems (1983), North-Holland · Zbl 0525.65045
[19] Gallardo, J. M.; Parés, C.; Castro, M., A generalized duality method for solving variational inequalities. Applications to some nonlinear Dirichlet problems, Numer. Math., 100, 259-291 (2005) · Zbl 1085.65052
[20] Gerbeau, J. F.; Perthame, B., Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst., Ser. B, 1, 89-102 (2001) · Zbl 0997.76023
[21] Glowinski, R.; Le Tallec, P., Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, vol. 9 (1989), Society for Industrial and Applied Mathematics (SIAM) · Zbl 0698.73001
[22] Glowinski, R.; Wachs, A., On the numerical simulation of viscoplastic fluid flow, (Glowinski, R.; Xu, J., Numerical Methods for Non-Newtonian Fluids. Numerical Methods for Non-Newtonian Fluids, Handbook of Numerical Analysis, vol. 16 (2011), Elsevier), 483-717 · Zbl 1318.76012
[23] Greenberg, J. M.; Le Roux, A. Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33, 1-16 (1996) · Zbl 0876.65064
[24] Huilgol, R. R.; You, Z., Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids, J. Non-Newton. Fluid Mech., 128, 2-3, 126-143 (2005) · Zbl 1195.76024
[25] Ionescu, I. R., Augmented lagrangian for shallow viscoplastic flow with topography, J. Comput. Phys., 242, 544-560 (2013) · Zbl 1309.76127
[26] Ito, K.; Kunisch, K., Lagrange Multiplier Approach to Variational Problems and Applications (2008), Society for Industrial and Applied Mathematics · Zbl 1156.49002
[27] LeVeque, R. J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput. Phys., 146, 346-365 (1998) · Zbl 0931.76059
[28] Nikitin, K. D.; Olshanskii, M. A.; Terekhov, K. M.; Vassilevski, Y. V., A numerical method for the simulation of free surface flows of viscoplastic fluid in 3D, J. Comput. Math., 29, 605-622 (2011) · Zbl 1265.76025
[29] Papanastasiou, T., Flows of materials with yield, J. Rheol., 385-404 (1987) · Zbl 0666.76022
[30] Parés, C.; Castro, M.; Macías, J., On the convergence of the Bermúdez-Moreno algorithm with constant parameters, Numer. Math., 92, 1, 113-128 (2002) · Zbl 1003.65069
[31] Parés, C.; Macías, J.; Castro, M., Duality methods with an automatic choice of parameters. Application to shallow water equations in conservative form, Numer. Math., 89, 161-189 (2001) · Zbl 0991.65057
[32] Roe, P. L., Upwind differencing schemes for hyperbolic conservation laws with source terms, (Carraso, C.; etal., Nonlinear Hyperbolic Problems. Nonlinear Hyperbolic Problems, St. Etienne, 1986. Nonlinear Hyperbolic Problems. Nonlinear Hyperbolic Problems, St. Etienne, 1986, Lecture Notes in Math., vol. 1270 (1987), Springer: Springer Berlin), 41-51
[33] Roquet, N.; Saramito, P., An adaptive finite element method for Bingham fluid flows around a cylinder, Comput. Methods Appl. Mech. Eng., 192, 31-32, 3317-3341 (2003) · Zbl 1054.76053
[34] Toro, E. F., Shock-Capturing Methods for Free-Surface Shallow Flows (2001), John Wiley & Sons · Zbl 0996.76003
[35] Vinay, G.; Wachs, A.; Agassant, J. F., Numerical simulation of weakly compressible Bingham flows: The restart of pipeline flows of waxy crude oils, J. Non-Newton. Fluid Mech., 136, 2-3, 93-105 (2006) · Zbl 1195.76066
[36] Vola, D.; Babik, F.; Latché, J. C., On a numerical strategy to compute gravity currents of non-Newtonian fluids, J. Comput. Phys., 201, 397-420 (2004) · Zbl 1061.76034
[37] Vola, D.; Boscardin, L.; Latché, J. C., Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results, J. Comput. Phys., 187, 441-456 (2003) · Zbl 1061.76035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.