×

Reusing linear finite elements in material and geometrically nonlinear analysis – application to plane stress problems. (English) Zbl 1311.74126

Summary: This paper describes a computational approach suitable for combined material and geometrically nonlinear analysis by the Finite Element Method. Its main advantage is reuse: once a finite element has been developed with good performance in linear analysis, extension to material and geometrically nonlinear problems is simplified. Extension to geometrically nonlinear problems is enabled by a corotational kinematic description, and that to material nonlinear problems by an optimization-based solution algorithm. The approach thus comprises three ingredients – the development of a high performance linear finite element (for example, using the ANDES concept), a corotational kinematic description, and an optimization algorithm. The main constraint in the application of the corotational formulation is restriction to small deformational displacements. The paper illustrates the realization of the three ingredients on plane stress problems that exhibit elasto-plastic material behavior. Numerical examples are presented to illustrate the effectiveness of the approach. Comparison is made with respect to solutions provided by the commercial nonlinear code ABAQUS as reference.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] MacNeal, R. H.; Harder, R. L., Proposed standard set of problems to test finite element accuracy, Finite Elem. Anal. Des., 1, 1, 3-20 (1985)
[2] Hughes, T. J.R., The Finite Element MethodLinear Static and Dynamic Finite Element Analysis (2000), Dover Publications: Dover Publications Mineola, NY
[3] Wilson, E. L.; Taylor, R. L.; Doherty, W.; Ghabussi, J., Incompatible displacement models, (Fenves, S. J.; Perrone, N.; Robinson, A.; Schnobrich, W., Numerical and Computer Models in Structural Mechanics (1973), Academic Press: Academic Press New York), 43-57
[4] Herrmann, L. R., Elasticity equations for nearly incompressible materials by a variational theorem, AIAA J., 3, 10, 1896-1900 (1965)
[5] Pian, T. H.H., Derivation of element stiffness matrices by assumed stress distributions, AIAA J., 2, 7, 1333-1336 (1964)
[6] MacNeal, R. H., Derivation of element stiffness matrices by assumed strain distributions, Nucl. Eng. Des., 70, 3-12 (1982)
[7] Bathe, K. J.; Dvorkin, E. N., A four-node plate bending element based on mindlin/reissner plate theory and a mixed interpolation, Int. J. Numer. Methods Eng., 21, 2, 367-383 (1985) · Zbl 0551.73072
[8] Park, K. C.; Stanley, G. M., A curved C0 shell element based on assumed natural-coordinate strains, Trans. ASME J. Appl. Mech., 53, 2, 278-920 (1986) · Zbl 0588.73137
[9] Simo, J. C.; Rifai, M. S., Class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Eng., 29, 8, 1595-1638 (1990) · Zbl 0724.73222
[10] Bergan, P. G., Finite elements based on energy orthogonal functions, Int. J. Numer. Methods Eng., 15, 10, 1541-1555 (1980) · Zbl 0438.73063
[11] Bergan, P. G.; Nygard, M. K., Finite elements with increased freedom in choosing shape functions, Int. J. Numer. Methods Eng., 20, 4, 643-663 (1984) · Zbl 0579.73077
[12] Felippa, C. A., Supernatural Quad4a template formulation, Comput. Methods Appl. Mech. Eng., 195, 41-43, 5316-5342 (2006) · Zbl 1120.74049
[13] Bergan, P. G.; Hansen, L., A new approach for deriving ‘good’ finite elements, (Whiteman, J. R., The Mathematics of Finite Elements and Applications, vol. II (1976), Academic Press: Academic Press London), 483-497
[14] Militello, C.; Felippa, C. A., The first ANDES elements9-dof plate bending triangles, Comput. Methods Appl. Mech. Eng., 93, 2, 217-246 (1991)
[15] Felippa, C. A.; Militello, C., Membrane triangles with corner drilling freedoms—II. The andes element, Finite Elem. Anal. Des., 12, 3-4, 189-201 (1992) · Zbl 0765.73061
[17] Lee, S.; Pian, T., Improvement of plate and shell finite elements by mixed formulations, AIAA J., 16, 1, 29-34 (1978) · Zbl 0368.73067
[18] Lee, S.; Wong, S., Mixed formulation finite elements for Mindlin theory plate bending, Int. J. Numer. Methods Eng., 18, 9, 1297-1311 (1982) · Zbl 0486.73069
[19] Pian, T. H.H.; Sumihara, K., Rational approach for assumed stress finite elements, Int. J. Numer. Methods Eng., 20, 9, 1685-1695 (1984) · Zbl 0544.73095
[20] Sze, K.; Ghali, A., Hybrid hexahedral element for solids, plates, shells and beams by selective scaling, Int. J. Numer. Methods Eng., 36, 9, 1519-1540 (1993) · Zbl 0772.73081
[21] Rankin, C. C.; Brogan, F. A., An element independent corotational procedure for the treatment of large rotations, Trans. ASME J. Pressure Vessel Technol., 108, 2, 165-174 (1986)
[22] Felippa, C. A.; Haugen, B., A unified formulation of small-strain corotational finite elementsI. Theory, Comput. Methods Appl. Mech. Eng., 194, 21-24, 2285-2335 (2005) · Zbl 1093.74055
[24] Battini, J. M., A non-linear corotational 4-node plane element, Mech. Res. Commun., 35, 6, 408-413 (2008) · Zbl 1258.74199
[25] Maier, G., A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Meccanica, 5, 1, 54 (1970) · Zbl 0197.23303
[26] Halphen, B.; Nguyen Quoc, S., Sur les matériaux standard généralisés, J. Méc., 14, 1, 39 (1975) · Zbl 0308.73017
[27] Sivaselvan, M. V.; Lavan, O.; Dargush, G. F.; Kurino, H.; Hyodo, Y.; Fukuda, R.; Sato, K.; Apostolakis, G.; Reinhorn, A. M., Numerical collapse simulation of large-scale structural systems using an optimization-based algorithm, Earthquake Eng. Struct. Dyn., 38, 5, 655-677 (2009)
[28] Krabbenhoft, K.; Lyamin, A. V.; Sloan, S. W.; Wriggers, P., An interior-point algorithm for elastoplasticity, Int. J. Numer. Methods Eng., 69, 3, 592-626 (2007) · Zbl 1194.74422
[29] Hartmann, S., A remark on the application of the Newton-Raphson method in non-linear finite element analysis, Comput. Mech., 36, 100-116 (2005) · Zbl 1102.74040
[30] Kulkarni, D. V.; Tortorelli, D. A.; Wallin, M., A Newton-Schur alternative to the consistent tangent approach in computational plasticity, Comput. Methods Appl. Mech. Eng., 196, 7, 1169-1177 (2007) · Zbl 1173.74474
[33] Xiao-Ming, C.; Song, C.; Yu-Qiu, L.; Zhen-Han, Y., Membrane elements insensitive to distortion using the quadrilateral area coordinate method, Comput. Struct., 82, 1, 35-54 (2004)
[34] Sze, K.; Ghali, A., On immunizing five-beta hybrid stress elements from trapezoidal locking in practical analyses, Int. J. Numer. Methods Eng., 47, 4, 907-920 (2000) · Zbl 0956.74065
[36] Piltner, R.; Taylor, R. L., A systematic construction of b-bar functions for linear and non-linear mixed-enhanced finite elements for plane elasticity problems, Int. J. Numer. Methods Eng., 44, 5, 615-639 (1999) · Zbl 0947.74067
[37] MacNeal, R. H., A theorem regarding the locking of tapered four-noded membrane elements, Int. J. Numer. Methods Eng., 24, 9, 1793-1799 (1987) · Zbl 0625.73083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.