×

A note on the derivation of rigid-plastic models. (English) Zbl 1354.74026

Summary: This note is devoted to a rigorous derivation of rigid-plasticity as the limit of elasto-plasticity when the elasticity tends to infinity.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
26B30 Absolutely continuous real functions of several variables, functions of bounded variation
35Q74 PDEs in connection with mechanics of deformable solids
49J45 Methods involving semicontinuity and convergence; relaxation
49Q20 Variational problems in a geometric measure-theoretic setting
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anzellotti G.: On the extremal stress and displacement in Hencky plasticity. Duke Math. J. 51(1), 133-147 (1984) · Zbl 0548.73022 · doi:10.1215/S0012-7094-84-05107-X
[2] Babadjian J.-F.: Traces of functions of bounded deformation. Indiana Univ. Math. J. 64, 1271-1290 (2015) · Zbl 1339.26030 · doi:10.1512/iumj.2015.64.5601
[3] Bensoussan A., Frehse J.: Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and H1 regularity. Comment. Math. Univ. Carolin. 37, 285-304 (1996) · Zbl 0851.35079
[4] Dal Maso G., De Simone A., Mora M.G.: Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Rational Mech. Anal. 180, 237-291 (2006) · Zbl 1093.74007 · doi:10.1007/s00205-005-0407-0
[5] Dal Maso G., De Simone A.: Solombrino F., Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differ. Equ. 40, 125-181 (2011) · Zbl 1311.74024 · doi:10.1007/s00526-010-0336-0
[6] Demengel F., Temam R.: Convex function of a measure. Indiana Univ. Math. J. 33, 673-709 (1984) · Zbl 0581.46036 · doi:10.1512/iumj.1984.33.33036
[7] Francfort G.A., Giacomini A.: Small strain heterogeneous elasto-plasticity revisited. Commun. Pure Appl. Math. 65, 1185-1241 (2012) · Zbl 1396.74036 · doi:10.1002/cpa.21397
[8] Girault V., Raviart P.-A.: Finite Element Method for Navier-Stokes Equations. Theory and Algorithm. Springer, New York (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[9] Goffman C., Serrin J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159-178 (1964) · Zbl 0123.09804 · doi:10.1215/S0012-7094-64-03115-1
[10] Kohn R.V., Temam R.: Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10, 1-35 (1983) · Zbl 0532.73039 · doi:10.1007/BF01448377
[11] Mainik A., Mielke A.: Existence results for energetic models for rate-independent systems. Calc. Var. PDEs 22, 73-99 (2005) · Zbl 1161.74387 · doi:10.1007/s00526-004-0267-8
[12] Suquet P.: Sur les équations de la plasticité: existence et régularité des solutions. J. Mécanique 20, 3-39 (1981) · Zbl 0474.73030
[13] Tartar, L.: Topics in Nonlinear Analysis. Publications mathématiques d’Orsay (1982) · Zbl 0395.00008
[14] Temam, R.: Mathematical Problems in Plasticity. Gauthier-Villars, Paris (1985) [Translation of Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983)] · Zbl 0547.73026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.