×

Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation. (English) Zbl 1383.74016

The paper presents a perfect plasticity model that includes both damage and healing considering small strains. It is specifically directed toward modeling of thin shear plastic bands with wider damage zones and possible healing of damage. A fractional time step discretization with assured numerical stability and convergence is employed to establish the weak solutions of the system of variational inequalities encountered in the development of the model. An efficient numerical implementation of the model is presented and illustrated by applying it to computational problems from geophysics. The work is interesting and has useful applications in geophysical modeling of reoccurring rupture of lithospheric faults.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
35Q74 PDEs in connection with mechanics of deformable solids
35K87 Unilateral problems for parabolic systems and systems of variational inequalities with parabolic operators
49N10 Linear-quadratic optimal control problems
65K15 Numerical methods for variational inequalities and related problems
74A30 Nonsimple materials
74R20 Anelastic fracture and damage
86A17 Global dynamics, earthquake problems (MSC2010)
90C53 Methods of quasi-Newton type

Software:

TFETI; Matlab
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] L. Adam, J. Outrata, and T. Roubíček, {\it Identification of some nonsmooth evolution systems with illustration on adhesive contacts at small strains}, Optimization, 2015, DOI:10.1080/02331934.2015.1111364. · Zbl 1379.35327
[2] J. Alberty, C. Carstensen, and D. Zarrabi, {\it Adaptive numerical analysis in primal elastoplasticity with hardening}, Comput. Methods Appl. Mech., 171 (1999), pp. 175-204. · Zbl 0956.74049
[3] R. Alessi, J.-J. Marigo, and S. Vidoli, {\it Gradient damage models coupled with plasticity and nucleation of cohesive cracks}, Arch. Ration. Mech. Anal., 214 (2014), pp. 575-615. · Zbl 1321.74006
[4] R. Alessi, J.-J. Marigo, and S. Vidoli, {\it Gradient damage models coupled with plasticity: Variational formulation and main properties}, Mechanics of Materials (2014); http://dx.doi.org/10.1016/j.mechmat.2013.12.005. · Zbl 1321.74006
[5] F. Alizadeh and D. Goldfarb, {\it Second-order cone programming}, Math. Program. Ser. B, 95 (2003), pp. 3-51. · Zbl 1153.90522
[6] L. Ambrosio, N. Fusco, and D. Pallara, {\it Functions of Bounded Variation and Free Discontinuity Problems}, Clarendon Press, New York, 2000. · Zbl 0957.49001
[7] S. Bartels, A. Mielke, and T. Roubíček, {\it Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation}, SIAM J. Numer. Anal., 50 (2012), pp. 951-976. · Zbl 1248.35105
[8] M. Brokate, C. Carstensen, and J. Valdman, {\it A quasi-static boundary value problem in multi-surface elastoplasticity. II: Numerical solution}, Math. Methods Appl. Sci., 28 (2005), pp. 881-901. · Zbl 1112.74007
[9] M. Cermak, T. Kozubek, S. Sysala, and J. Valdman, {\it A TFETI domain decomposition solver for elastoplastic problems}, Appl. Math. Comput., 231 (2014), pp. 634-653. · Zbl 1410.74061
[10] P. Colli and A. Visintin, {\it On a class of doubly nonlinear evolution equations}, Comm. Partial Differential Equations, 15 (1990), pp. 737-756. · Zbl 0707.34053
[11] V. Crismale, {\it Globally stable quasistatic evolution for a coupled elastoplastic-damage model}, ESAIM Control Optim. Calc. Var., 2015, DOI:10.1051/cocv/2015037. · Zbl 1342.74026
[12] V. Crismale and G. Lazzaroni, {\it Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model}, preprint, SISSA 05/2015/MATE, 2015. · Zbl 1333.74021
[13] G. Dal Maso, A. DeSimone, and M. G. Mora, {\it Quasistatic evolution problems for linearly elastic-perfectly plastic materials}, Arch. Ration. Mech. Anal., 180 (2006), pp. 237-291. · Zbl 1093.74007
[14] G. Dal Maso, A. DeSimone, and F. Solombrino, {\it Quasistatic evolution for Cam-Clay plasticity: A weak formulation via viscoplastic regularization and time parametrization}, Calc. Var. Partial Partial Differential Equations, 40 (2011), pp. 125-181. · Zbl 1311.74024
[15] G. Dal Maso, G. A. Francfort, and R. Toader, {\it Quasistatic crack growth in nonlinear elasticity}, Arch. Ration. Mech. Anal., 176 (2005), pp. 165-225. · Zbl 1064.74150
[16] F. Ebobisse and B. D. Reddy, {\it Some mathematical problems in perfect plasticity}, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 5071-5094. · Zbl 1112.74324
[17] G. Francfort and A. Giacomini, {\it Small strain heterogeneous elasto-plasticity revisited}, Comm. Pure Appl. Math., 65 (2012), pp. 1185-1241. · Zbl 1396.74036
[18] M. Frémond, {\it Non-Smooth Thermomechanics}, Springer, Berlin, 2002. · Zbl 0990.80001
[19] E. Fried and M. E. Gurtin, {\it Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales}, Arch. Ration. Mech. Anal., 182 (2006), pp. 513-554. · Zbl 1104.74006
[20] E. Giusti, {\it Direct Methods in Calculus of Variations}, World Scientific, Singapore, 2003. · Zbl 1028.49001
[21] P. Grassl and M. Jirásek, {\it Plastic model with non-local damage applied to concrete}, Int. J. Numer. Anal. Meth. Geomech., 30 (2006), pp. 71-90. · Zbl 1140.74538
[22] P. Gruber, J. Kienesberger, U. Langer, J. Schöeberl, and J. Valdman, {\it Fast Solvers and A Posteriori Error Estimates in Elastoplasticity}, in Numerical and Symbolic Scientific Computing, U. Langer, ed., Texts Monogr. Symbol. Comput., Springer, New York, 2004, pp. 45-63. · Zbl 06082197
[23] P. Gruber, D. Knees, S. Nesenenko, and M. Thomas, {\it Analytical and numerical aspects of time-dependent models with internal variables}, Z. Angew. Math. Mechanik, 90 (2010), pp. 861-902. · Zbl 1380.74020
[24] P. Gruber and J. Valdman, {\it Solution of one-time-step problems in elastoplasticity by a Slant Newton Method}, SIAM J. Sci. Comput., 31 (2009), pp. 1558-1580. · Zbl 1186.74025
[25] G. Grün, {\it Degenerate parabolic equations of fourth order and a plasticity model with nonlocal hardening}, Z. Anal. Anwend., 14 (1995), pp. 541-573. · Zbl 0835.35061
[26] M. E. Gurtin and A. I. Murdoch, {\it A continuum theory of elastic material surfaces}, Arch. Ration. Mech. Anal., 57 (1974), pp. 291-323. · Zbl 0326.73001
[27] Y. Hamiel, V. Lyakhovsky, and Y. Ben-Zion, {\it The elastic strain energy of damaged solids with applications to non-linear deformation of crystalline rocks}, Pure Appl. Geophys., 168 (2011), pp. 2199-2210.
[28] W. Han and B. D. Reddy, {\it Plasticity (Mathematical Theory and Numerical Analysis)}, Springer, New York, 1999. · Zbl 0926.74001
[29] M. Jirásek and Z. P. Bažant, {\it Inelastic Analysis of Structures}, Wiley, Chichester, UK, 2002.
[30] C. Johnson, {\it Existence theorems for plasticity problems}, J. Math. Pures Appl., 55 (1976), pp. 431-444. · Zbl 0351.73049
[31] L. M. Kachanov, {\it Introduction to Continuum Damage Mechanics}, M. Nijhoff, Dordrecht, The Netherlands, 1986. · Zbl 0596.73091
[32] J. Kienesberger and J. Valdman, {\it An Efficient Solution Algorithm for Elastoplasticity and Its First Implementation Towards Uniform \(h\)- and \(p\)- Mesh Refinements}, in ENUMATH 2005, A. de Castro, ed., Springer, Berlin, 2006, pp. 1117-1125. · Zbl 1222.74043
[33] D. Krajcinovic, {\it Damage mechanics}, Mechanics of Materials, 8 (1989), pp. 117-197.
[34] J. Lemaitre, {\it A Course on Damage Mechanics}, 2nd ed., Springer, Berlin, 1996. · Zbl 0852.73003
[35] J. Lemaitre and R. Desmorat, {\it Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures}, Springer, Berlin, 2005.
[36] M. D. Liu and J. P. Carter, {\it A structured Cam Clay model}, Canadian Geotech. J., 39 (2002), pp. 1313-1332.
[37] V. Lyakhovsky, Y. Ben-Zion, and A. Agnon, {\it Distributed damage, faulting, and friction}, J. Geophys. Res., 102 (1997), pp. 27,635-27,649.
[38] V. Lyakhovsky and V. P. Myasnikov, {\it On the behavior of elastic cracked solid}, Phys. Solid Earth, 10 (1984), pp. 71-75.
[39] V. Lyakhovsky, Z. Reches, R. Weiberger, and T. E. Scott, {\it Nonlinear elastic behaviour of damaged rocks}, Geophys. J. Int., 130 (1997), pp. 157-166.
[40] G. A. Maugin, {\it The Thermomechanics of Plasticity and Fracture}, Cambridge University Press, Cambridge, UK, 1992. · Zbl 0753.73001
[41] A. Mielke, {\it Evolution in rate-independent systems}, in Handbook of Differential Equations, Evolutionary Equations, Vol. 2, C. M. Dafermos and E. Feireisl, eds., Elsevier, Amsterdam, 2005, pp. 461-559. · Zbl 1120.47062
[42] A. Mielke and T. Roubíček, {\it Rate-Independent Systems: Theory and Application}, Springer, New York, 2015. · Zbl 1339.35006
[43] A. Mielke, T. Roubíček, and J. Zeman, {\it Complete damage in elastic and viscoelastic media and its energetics}, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 1242-1253. · Zbl 1227.74058
[44] A. Mielke and F. Theil, {\it On rate-independent hysteresis models}, Nonlinear. Diff. Eq. Appl., 11 (2004), pp. 151-189. · Zbl 1061.35182
[45] V. Nübel, A. Düster, and E. Rank, {\it An \(rp-\) adaptive finite element method for elastoplastic problems}, Comput. Mech., 29 (2007), pp. 557-574. · Zbl 1163.74046
[46] P. Podio-Guidugli, {\it Contact interactions, stress, and material symmetry, for nonsimple elastic materials}, Theor. Appl. Mech., 28-29 (2002), pp. 261-276. · Zbl 1085.74004
[47] P. Podio-Guidugli, T. Roubíček, and G. Tomassetti, {\it A thermodynamically-consistent theory of the ferro/paramagnetic transition}, Arch. Ration. Mech. Anal., 198 (2010), pp. 1057-1094. · Zbl 1226.82017
[48] P. Podio-Guidugli and M. Vianello, {\it Hypertractions and hyperstresses convey the same mechanical information}, Cont. Mech. Thermodynam., 22 (2010), pp. 163-176. · Zbl 1257.74003
[49] T. Rahman and J. Valdman, {\it Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements}, Appl. Math. Comput, 219 (2013), pp. 7151-7158. · Zbl 1288.65169
[50] S. I. Repin, {\it Errors of finite element method for perfectly elasto-plastic problems}, Math. Models Methods Appl. Sci., 6 (1996), pp. 587-607. · Zbl 0856.73071
[51] T. Roubíček, {\it Rate independent processes in viscous solids at small strains}, Math. Methods. Appl. Sci., 32 (2009), pp. 825-862, erratum p. 2176. · Zbl 1239.35158
[52] T. Roubíček, {\it Nonlinear Partial Differential Equations with Applications}, 2nd ed., Birkhäuser, Basel, 2013. · Zbl 1270.35005
[53] T. Roubíček, {\it Thermodynamics of perfect plasticity}, Discrete Contin. Dynam. Syst. Ser. S, 6 (2013), pp. 193-214. · Zbl 1262.35139
[54] T. Roubíček, O. Souček, and R. Vodička, {\it A model of rupturing lithospheric faults with re-occurring earthquakes}, SIAM J. Appl. Math., 73 (2013), pp. 1460-1488. · Zbl 1295.35283
[55] T. Roubíček and U. Stefanelli, {\it Magnetic shape-memory alloys: Thermomechanical modeling and analysis}, Cont. Mech. Thermodyn., 26 (2014), pp. 783-810. · Zbl 1341.74032
[56] C. Schwab, {\it \(P\)- and \(hp\)- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics}, Oxford University Press, New York, 1998. · Zbl 0910.73003
[57] M. Šilhavý, {\it Phase transitions in non-simple bodies}, Arch. Ration. Mech. Anal., 88 (1985), pp. 135-161. · Zbl 0624.73007
[58] M. Sofonea, W. Han, and M. Shillor, {\it Analysis and Approximation of Contact Problems with Adhesion or Damage}, Chapman & Hall/CRC, Boca Raton. FL, 2006. · Zbl 1089.74004
[59] F. Solombrino, {\it Quasistatic evolution problems for nonhomogeneous elastic-plastic materials}, J. Convex Anal., 16 (2009), pp. 89-119. · Zbl 1166.74006
[60] J. F. Sturm, {\it Implementation of interior point methods for mixed semidefinite and second order cone optimization problems}, Optim. Methods Softw., 17 (2002), pp. 1105-1154. · Zbl 1032.90021
[61] P.-M. Suquet, {\it Existence et régularité des solutions des équations de la plasticité parfaite}, C. R. Acad. Sci. Paris Sér. A, 286 (1978), pp. 1201-1204. · Zbl 0378.35057
[62] R. A. Toupin, {\it Elastic materials with couple stresses}, Arch. Ration. Mech. Anal., 11 (1962), pp. 385-414. · Zbl 0112.16805
[63] J. Valdman, {\it Continuum Undergoing Combined Elasto-Plasto-Damage Transformation. MATLAB Package}, http://www.mathworks.com/matlabcentral/fileexchange/authors/37756.
[64] S. J. Wheeler, A. Näätänen, K. Karstunen, and M. Lojander, {\it An anisotropic elastoplastic model for soft clays}, Canadian Geotech. J., 40 (2003), pp. 403-418.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.