Albright, E. Jason; Ramsey, Scott D.; Schmidt, Joseph H.; Baty, Roy S. Scaling in cavity-expansion equations using the isovector method. (English) Zbl 1457.74146 Q. J. Mech. Appl. Math. 71, No. 1, 25-45 (2018). MSC: 74M15 74C05 22E70 PDF BibTeX XML Cite \textit{E. J. Albright} et al., Q. J. Mech. Appl. Math. 71, No. 1, 25--45 (2018; Zbl 1457.74146) Full Text: DOI OpenURL
Lamothe, Vincent Symmetry groups of non-stationary planar ideal plasticity. (English) Zbl 1334.74020 J. Phys. A, Math. Theor. 48, No. 11, Article ID 115201, 25 p. (2015). MSC: 74C05 35Q74 22F50 PDF BibTeX XML Cite \textit{V. Lamothe}, J. Phys. A, Math. Theor. 48, No. 11, Article ID 115201, 25 p. (2015; Zbl 1334.74020) Full Text: DOI arXiv OpenURL
Mota, Alejandro; Sun, WaiChing; Ostien, Jakob T.; Foulk, James W. III; Long, Kevin N. Lie-group interpolation and variational recovery for internal variables. (English) Zbl 1398.74372 Comput. Mech. 52, No. 6, 1281-1299 (2013). MSC: 74S05 74C15 65F30 74G65 74C99 22E70 PDF BibTeX XML Cite \textit{A. Mota} et al., Comput. Mech. 52, No. 6, 1281--1299 (2013; Zbl 1398.74372) Full Text: DOI OpenURL
Luque-Raigón, José Miguel; Campoamor-Stursberg, Rutwig A unified approach for plasticity yield criteria on the tangent space to the Cauchy tensor. (English) Zbl 1291.74041 Math. Mech. Solids 17, No. 2, 83-103 (2012). MSC: 74C05 22E70 PDF BibTeX XML Cite \textit{J. M. Luque-Raigón} and \textit{R. Campoamor-Stursberg}, Math. Mech. Solids 17, No. 2, 83--103 (2012; Zbl 1291.74041) Full Text: DOI OpenURL
Lamothe, Vincent Symmetry group analysis of an ideal plastic flow. (English) Zbl 1274.74070 J. Math. Phys. 53, No. 3, 033704, 33 p. (2012). MSC: 74C05 35B06 35Q74 22E70 PDF BibTeX XML Cite \textit{V. Lamothe}, J. Math. Phys. 53, No. 3, 033704, 33 p. (2012; Zbl 1274.74070) Full Text: DOI arXiv OpenURL
Lamothe, Vincent Group analysis of an ideal plasticity model. (English) Zbl 1392.74017 J. Phys. A, Math. Theor. 45, No. 28, Article ID 285203, 21 p. (2012). MSC: 74C05 22E70 PDF BibTeX XML Cite \textit{V. Lamothe}, J. Phys. A, Math. Theor. 45, No. 28, Article ID 285203, 21 p. (2012; Zbl 1392.74017) Full Text: DOI arXiv OpenURL
Kovalëv, Vladimir Aleksandrovich; Radaev, Yuriĭ Nikolaevich An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity. (Russian. English summary) Zbl 1449.74051 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 2011, No. 1(22), 196-220 (2011). MSC: 74C05 74S22 17B81 22E70 PDF BibTeX XML Cite \textit{V. A. Kovalëv} and \textit{Y. N. Radaev}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 2011, No. 1(22), 196--220 (2011; Zbl 1449.74051) Full Text: DOI MNR OpenURL
Mielke, Alexander A new approach to elasto-plasticity using energy and dissipation functionals. (English) Zbl 1135.74009 Hill, James M. (ed.) et al., Applied mathematics entering the 21st century. Papers from the 5th international congress on industrial and applied mathematics (ICIAM 2003), Sydney, Australia, July 7–11, 2003. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (ISBN 978-0-89871-559-0/hbk). Proceedings in Applied Mathematics 116, 315-335 (2004). MSC: 74C15 74H20 35Q72 22E70 PDF BibTeX XML Cite \textit{A. Mielke}, Proc. Appl. Math. 116, 315--335 (2004; Zbl 1135.74009) OpenURL
Mielke, Alexander Finite elastoplasticity Lie groups and geodesics on \(\text{SL}(d)\). (English) Zbl 1146.74309 Newton, Paul (ed.) et al., Geometry, mechanics, and dynamics. Volume in honor of the 60th birthday of J. E. Marsden. New York, NY: Springer (ISBN 0-387-95518-6/hbk). 61-90 (2002). MSC: 74C15 53B40 22E40 53C22 PDF BibTeX XML Cite \textit{A. Mielke}, in: Geometry, mechanics, and dynamics. Volume in honor of the 60th birthday of J. E. Marsden. New York, NY: Springer. 61--90 (2002; Zbl 1146.74309) Full Text: DOI OpenURL
Hong, Hong-Ki; Liu, Chein-Shan Lorentz group SO\(_o\)(5,1) for perfect elastoplasticity with large deformation and a consistency numerical scheme. (English) Zbl 1006.74018 Int. J. Non-Linear Mech. 34, No. 6, 1113-1130 (2000). MSC: 74C15 22E43 PDF BibTeX XML Cite \textit{H.-K. Hong} and \textit{C.-S. Liu}, Int. J. Non-Linear Mech. 34, No. 6, 1113--1130 (2000; Zbl 1006.74018) Full Text: DOI OpenURL
Hackl, Klaus Group theory and parameter identification in the nonlinear anisotropic elastoplasticity. (Gruppentheorie und Parameteridentifikation in der nichtlinearen, anisotropen Elastoplastizität.) (German) Zbl 0973.74523 ZAMM, Z. Angew. Math. Mech. 79, Suppl. 2, S453-S454 (1999). MSC: 74C15 74E10 22E70 PDF BibTeX XML Cite \textit{K. Hackl}, ZAMM, Z. Angew. Math. Mech. 79, S453--S454 (1999; Zbl 0973.74523) OpenURL