×

“Reality” and representation in mechanics: the legacy of Walter Noll. (English) Zbl 1415.74001

J. Elasticity 135, No. 1-2, 117-148 (2019); correction ibid. 137, No. 1, 117-118 (2019).
Summary: The foundations of the mechanics of generalized continua are revisited in the light of the theoretical progress made in the last decades. The paper includes a summary of the scientific activity of W. Noll, to whom a large part of this progress is due.

MSC:

74-03 History of mechanics of deformable solids
01A60 History of mathematics in the 20th century
01A61 History of mathematics in the 21st century
01A70 Biographies, obituaries, personalia, bibliographies
74Axx Generalities, axiomatics, foundations of continuum mechanics of solids
74A05 Kinematics of deformation
74A10 Stress
74A20 Theory of constitutive functions in solid mechanics
74A60 Micromechanical theories
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)

Biographic References:

Noll, Walter
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aifantis, E. C., On the microstructural origin of certain inelastic models, ASME J. Eng. Mater. Technol., 106, 326-330, (1984)
[2] Ambrosio, L.; Tortorelli, V. M., Approximation of functionals depending on jumps by elliptic functionals via \(\varGamma \)-convergence, Commun. Pure Appl. Math., 43, 999-1036, (1990) · Zbl 0722.49020
[3] Barroso, A. C.; Matias, J.; Morandotti, M.; Owen, D. R., Second-order structured deformations: relaxation, integral representation and applications, Arch. Ration. Mech. Anal., 225, 1025-1072, (2017) · Zbl 1370.74067
[4] Cauchy, A.-L.: Sur l’équilibre et le mouvement intérieur des corps considérés comme des masses continues. Œuvres complètes Sér. 9(2), 342-369 (1829)
[5] Choksi, R.; Fonseca, I., Bulk and interfacial energy densities for structured deformations of continua, Arch. Ration. Mech. Anal., 138, 37-103, (1997) · Zbl 0891.73078
[6] Coleman, B. D.; Noll, W., An approximation theorem for functionals with applications in continuum mechanics, Arch. Ration. Mech. Anal., 6, 97-112, (1960) · Zbl 0097.16403
[7] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 167-178, (1963) · Zbl 0113.17802
[8] Piero, G., The energy of a one-dimensional structured deformation, Math. Mech. Solids, 6, 387-408, (2001) · Zbl 1028.74019
[9] Piero, G., On the method of virtual power in continuum mechanics, J. Mech. Mater. Struct., 4, 281-292, (2009)
[10] Piero, G., Nonclassical continua, pseudobalance, and the law of action and reaction, Math. Mech. Complex Syst., 2, 71-107, (2014) · Zbl 1400.74007
[11] Piero, G., On the decomposition of the deformation gradient in plasticity, J. Elast., 131, 111-124, (2018) · Zbl 1387.74028
[12] Piero, G., An axiomatic framework for the mechanics of generalized continua, Rend. Lincei Mat. Appl., 29, 31-61, (2018) · Zbl 1391.74007
[13] Piero, G., The variational structure of classical plasticity, Math. Mech. Complex Syst., 6, 137-180, (2018) · Zbl 1401.74052
[14] Piero, G.; Owen, D. R., Structured deformations of continua, Arch. Ration. Mech. Anal., 124, 99-155, (1993) · Zbl 0795.73005
[15] Deseri, L.; Owen, D. R., Toward a field theory for elastic bodies undergoing disarrangements, J. Elast., 70, 197-236, (2003) · Zbl 1074.74003
[16] Fichera, G.: I dificili rapporti tra l’analisi funzionale e la fisica matematica. Rend. Semin. Mat. Univ. Padova 68, 245-259 (1982)
[17] Fichera, G.: Sul principio della memoria evanescente. Rend. Mat. Accad. Lincei, Suppl. 9(1), 161-170 (1990) · Zbl 0515.73003
[18] Fleck, N. A.; Hutchinson, J. W., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, 41, 1825-1857, (1993) · Zbl 0791.73029
[19] Fleck, N. A.; Willis, J. R., A mathematical basis for strain-gradient plasticity theory—Part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045-1057, (2009) · Zbl 1173.74316
[20] Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: théorie du second gradient. J. Méc. 12, 235-274 (1973) · Zbl 0261.73003
[21] Germain, P., The method of virtual power in continuum mechanics. Part 2: microstructure, SIAM J. Appl. Math., 25, 556-575, (1973) · Zbl 0273.73061
[22] Gudmundson, P., A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids, 52, 1379-1404, (2004) · Zbl 1114.74366
[23] Gurtin, M. E.; Martins, L. C., Cauchy’s theorem in classical physics, Arch. Ration. Mech. Anal., 60, 305-324, (1976) · Zbl 0347.73001
[24] Gurtin, M. E.; Anand, L., A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: finite deformations, Int. J. Plast., 21, 2297-2318, (2005) · Zbl 1101.74316
[25] Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)
[26] Halphen, B.: Nguyen Quoc Son, sur les matériaux standards généralisés. J. Méc. 14, 39-63 (1975) · Zbl 0308.73017
[27] Jammer, M.: Concepts of Force. Dover, Mineola (1999)
[28] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, New York (1927). Reprinted by Dover Publisher, 1944 · JFM 53.0752.01
[29] Mach, E.: Die Mechanik in ihrer Entwickelung historisch-kritisch dargestellt. Brockhaus, Leipzig (1883). 2nd English edn. “The Science of Mechanics. A Critical and Historical Account of Its Development”. The Open Court publisher, Chicago and London (1919) · JFM 15.0762.01
[30] Maxwell, J. C., On action at a distance, Proc. R. Inst. G. B. VII, 44, 311-323, (1875)
[31] Maxwell, J.C.: Matter and Motion. Society for Promoting Christian Knowledge, London (1878). Dover edition, New York (1952)
[32] Noll, W., On the continuity of the solid and fluid states, J. Ration. Mech. Anal., 4, 3-81, (1955) · Zbl 0064.42001
[33] Noll, W., A mathematical theory of the mechanical behavior of continuous media, Arch. Ration. Mech. Anal., 2, 197-226, (1958) · Zbl 0083.39303
[34] Noll, W., The foundations of classical mechanics in the light of recent advances in continuum mechanics, 266-281, (1959), Amsterdam
[35] Noll, W., La mécanique classique, basée sur un axiome d’objectivité, 47-56, (1963), Paris
[36] Noll, W., A new mathematical theory of simple materials, Arch. Ration. Mech. Anal., 48, 1-50, (1972) · Zbl 0271.73006
[37] Noll, W., Lectures on the foundations of continuum mechanics and thermodynamics, Arch. Ration. Mech. Anal., 52, 62-92, (1973) · Zbl 0284.73002
[38] Noll, W.: The Foundations of Continuum Mechanics and Thermodynamics. Selected Papers of W. Noll. Springer, Berlin (1974) · Zbl 0332.73001
[39] Noll, W.; Lawvere, F. W. (ed.); Schnauel, S. H. (ed.), Continuum mechanics and geometric integration theory, No. 1174, 17-29, (1986), Berlin
[40] Noll, W.: Five contributions to natural philosophy (2004). http://repository.cmu.edu/math
[41] Noll, W., A frame-free formulation of elasticity, J. Elast., 83, 291-307, (2006) · Zbl 1158.74320
[42] Noll, W., On the past and future of natural philosophy, J. Elast., 84, 1-11, (2006) · Zbl 1103.00303
[43] Noll, W.; Virga, E. G., Fit regions and functions of bounded variation, Arch. Ration. Mech. Anal., 102, 1-21, (1988) · Zbl 0668.73005
[44] Owen, D. R.; Piero, G. (ed.); Owen, D. R. (ed.), Structured deformations—part two, No. 58, (2000)
[45] Owen, D. R., Elasticity with gradient-disarrangements: a multiscale geometrical perspective for strain-gradient theories of elasticity and plasticity, J. Elast., 127, 115-150, (2017) · Zbl 1426.74049
[46] Seguin, B.: Frame-free continuum thermomechanics. Ph.D. thesis, Carnegie Mellon University (2010) http://repository.cmu.edu/math/dissertations
[47] Šilhavý, M., The existence of the flux vector and the divergence theorem for general Cauchy fluxes, Arch. Ration. Mech. Anal., 90, 195-212, (1985) · Zbl 0593.73007
[48] Šilhavý, M., Mass, internal energy, and Cauchy’s equations in frame-indifferent thermodynamics, Arch. Ration. Mech. Anal., 107, 1-22, (1989) · Zbl 0729.70001
[49] Truesdell, C., Whence the law of moment of momentum?, (1968), New York
[50] Truesdell, C.: A First Course in Rational Continuum Mechanics, vol. 1, 2nd edn. Academic Press, Boston (1991) · Zbl 0866.73001
[51] Truesdell, C.; Noll, W.; Flügge, S. (ed.), The non-linear field theories of mechanics, (1965), Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.