×

Framework for deformation induced anisotropy in glassy polymers. (English) Zbl 1397.74032

Summary: In this paper a constitutive model for glassy polymers is developed. Glassy polymers consist of a number of polymer chains that at a microscopic level form a network. If the distribution of the polymer chains shows some preferred direction, the mechanical response at a global macroscopic level will be anisotropic. To incorporate the orientational distribution of the polymer chains, a homogenization procedure involving a chain orientation distribution function was undertaken. When polymers are exposed to external loading, the chains at the microscopic level orient in a certain manner, leading to an evolution of the macroscopic anisotropic properties. This phenomenon was modeled by use of evolution equations for the chains at a microscopic level and are then-by using the orientation distribution function-transformed to the macroscopic level. The theories involved are developed in a large strain setting in which a multiplicative split of the deformation gradient for the elastic-viscoplastic response is adopted. Various numerical experiments were conducted to evaluate the model that was developed.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74E10 Anisotropy in solid mechanics
74A20 Theory of constitutive functions in solid mechanics
82D60 Statistical mechanics of polymers
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Haward R.N., Thackray G.: The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc. R. Soc. Lond. A: Math. Phys. Sci. 302, 453–472 (1968) · doi:10.1098/rspa.1968.0029
[2] James H.M., Guth E.: Theory of the elastic properties of rubber. J. Chem. Phys. 11, 455–481 (1943) · doi:10.1063/1.1723785
[3] Boyce M.C., Parks D.M., Argon A.S.: Large inelastic deformations of glassy polymers. Part I: rate dependent constitutive model. Mech. Mater. 7, 15–33 (1988) · doi:10.1016/0167-6636(88)90003-8
[4] Arruda E.M., Boyce M.C.: Evolution of plastic anisotropy in amorphous polymers during finite straining. Int. J. Plast. 9, 697–720 (1993) · doi:10.1016/0749-6419(93)90034-N
[5] Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993) · Zbl 1355.74020 · doi:10.1016/0022-5096(93)90013-6
[6] Wu P.D., van der Giessen E.: On neck propagation in amorphous glassy polymers under plane strain tension. Int. J. Plast. 11, 211–235 (1995) · Zbl 0823.73023 · doi:10.1016/0749-6419(94)00043-3
[7] Tomita, Y., Adachi, T.: Nonaffine network model for glassy polymer and prediction of instability. In: de Borst, R., van der Giessen, E. (eds.) Proceedings of IUTAM Symposium on Material Instability, pp. 303–321 (1998)
[8] Tomita Y.: Constitutive modelling of deformation behavior of glassy polymers and applications. Int. J. Mech. Sci. 42, 1455–1469 (2000) · Zbl 1039.74007 · doi:10.1016/S0020-7403(99)00085-5
[9] Ghorbel E.: A viscoplastic constitutive model for polymeric materials. Int. J. Plast. 24, 2032–2058 (2008) · Zbl 1148.74010 · doi:10.1016/j.ijplas.2008.01.003
[10] Colak O.U.: Modeling deformation behavior of polymers with viscoplasticity theory based on overstress. Int. J. Plast. 21, 145–160 (2005) · Zbl 1112.74335 · doi:10.1016/j.ijplas.2004.04.004
[11] Wu P.D., van der Giessen E.: On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993) · Zbl 0825.73103 · doi:10.1016/0022-5096(93)90043-F
[12] Treolar L.R.G., Riding G.: A non-gaussian theory for rubber in biaxial strain. I: mechanical properties. Proc. R. Soc. Lond. A: Math. Phys. Sci. 369, 261–280 (1979) · Zbl 1355.74022 · doi:10.1098/rspa.1979.0163
[13] Tomita Y., Adachi T., Tanaka S.: Modelling and application of constitutive equation for glassy polymer based on nonaffine network theory. Eur. J. Mech. A: Solids 16, 745–755 (1997) · Zbl 0905.73003
[14] Miehe C., Goktepe S., Lulei F.: A micro-macro approach to rubber-like materials. Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004) · Zbl 1091.74008 · doi:10.1016/j.jmps.2004.03.011
[15] Göktepe S., Miehe C.: A micro-macro approach to rubber-like materials. Part III: the micro-sphere model of anisotropic mullins-type damage. J. Mech. Phys. Solids 53, 2259–2283 (2005) · Zbl 1120.74320 · doi:10.1016/j.jmps.2005.04.010
[16] Alastrué V., Martínez M.A., Doblaré M., Menzel A.: Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. J. Mech. Phys. Solids 57, 178–203 (2009) · Zbl 1198.74049 · doi:10.1016/j.jmps.2008.09.005
[17] Boyce M.C., Parks D.M., Argon A.S.: Plastic flow in oriented glassy polymers. Int. J. Plast. 5, 593–615 (1989) · doi:10.1016/0749-6419(89)90003-X
[18] Arruda E.M., Boyce M.C., Quintus-Bosz H.: Effects of initial anisotropy on the finite strain defomation behavior of glassy polymers. Int. J. Plast. 9, 783–811 (1993) · doi:10.1016/0749-6419(93)90052-R
[19] Anand L., Ames N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123–1170 (2006) · Zbl 1176.74038 · doi:10.1016/j.ijplas.2005.07.006
[20] Harren S.V.: Toward a new phenomenological flow rule for orientationally hardening glassy polymers. J. Mech. Phys. Solids 43, 1151–1173 (1995) · Zbl 0878.73021 · doi:10.1016/0022-5096(95)00025-E
[21] Harren S.V.: A yield surface and flow rule for orientationally hardening polymers subjected to arbitrary deformations. J. Mech. Phys. Solids 45, 1–20 (1997) · doi:10.1016/S0022-5096(96)00077-4
[22] Dettenmaier M., Maconnachie A., Higgins J.S., Kausch H.H., Nguyens T.Q.: Neutron scattering studies of the chain conformation of poly(methy1 methacrylate) deformed below the glass transition temperature. Macromolecules 19, 773–778 (1986) · doi:10.1021/ma00157a048
[23] Gilmer J.W., Wiswe D., Zachmann H.-G., Kugler J., Fisher E.W.: Changes in molecular conformations in poly(etylene terephthalate) produced by crystallization and drawing as determined by neutron scattering. Polymer 27, 1391–1395 (1989) · doi:10.1016/0032-3861(86)90039-X
[24] Rössle W., Linder P., Dettenmaier M.: Deformation of glassy polycarbonate studied by neutron scattering. Physic B 156-157, 414–416 (1989) · doi:10.1016/0921-4526(89)90692-3
[25] Harrysson M., Ristinmaa M.: Description of evolving anisotropy at large strains. Mech. Mater. 39, 267–282 (2007) · Zbl 1121.74327 · doi:10.1016/j.mechmat.2006.05.005
[26] Harrysson M., Ristinmaa M.: Two different approaches to model evolving directional properties at finite deformations. Acta Mech. 199, 97–116 (2008) · Zbl 1148.74003 · doi:10.1007/s00707-007-0559-0
[27] Harrysson M., Harrysson A., Ristinmaa M.: Spatial representation of evolving anisotropy at large strains. Int. J. Solids Struct. 44, 3514–3532 (2007) · Zbl 1121.74327 · doi:10.1016/j.ijsolstr.2006.10.002
[28] Johansson G., Ekh M.: On the modeling of evolving anisotropy and large strains in pearlitic steel. Eur. J. Mech. A: Solids 25, 1041–1060 (2006) · Zbl 1105.74035 · doi:10.1016/j.euromechsol.2006.02.003
[29] Menzel A., Harrysson M., Ristinmaa M.: Towards an orientation-distribution-based multi-scale approach for remodelling biological tissue. Comput. Methods Biomech. Biomed. Eng. 11, 505–524 (2008) · doi:10.1080/10255840701771776
[30] Kröner E.: Allgemeine Kontinuumstheorie der Versetzungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960) · Zbl 0090.17601 · doi:10.1007/BF00281393
[31] Lee E.H.: Elastic-plastic deformations at finite strains. J. Appl. Mech. 36, 1–6 (1969) · Zbl 0179.55603
[32] Dafalias Y.F.: Orientation distribution function in non-affine rotations. J. Mech. Phys. Solids 49, 2493–2516 (2001) · Zbl 1047.74504 · doi:10.1016/S0022-5096(01)00065-5
[33] Raumann G.: The anisotropy of the shear moduli of drawn polyethylene. Proc. Phys. Soc. 79, 1221–1233 (1962) · doi:10.1088/0370-1328/79/6/316
[34] Bischoff J.E., Arruda E.M., Grosh K.: Finite element simulations of orthotropic hyperelasticity. Finite Elem. Anal. Des. 38(10), 983–998 (2002) · Zbl 1051.74041 · doi:10.1016/S0168-874X(02)00089-6
[35] Bazant Z.P., Oh B.H.: Efficient numerical ingetration on the surface of a sphere. Zeitschrift für Angewandte Mathematik und Mechanik 66, 37–49 (1986) · Zbl 0597.65016 · doi:10.1002/zamm.19860660108
[36] Heo A., Xu Y.: Construction fully symmetric cubature formulae for the sphere. Math. Comput. 70, 269–279 (2001) · Zbl 0982.65027
[37] Alastrué V., Martínez M.A., Menzel A., Doblaré M.: On the use of non-linear transformations for the evaluation of anisotropic rotationally symmetric directional integrals. Application to the stress analysis in fibred soft tissues. Int. J. Numer. Methods Eng. 79(4), 474–504 (2009) · Zbl 1171.74461 · doi:10.1002/nme.2577
[38] Simo, J.C.: Numerical analysis and simulation of plasticity. In: Handbook of Numerical Analysis, vol. VI. Springer-Verlag, New York (1998) · Zbl 0930.74001
[39] Boyce M.C., Arruda E.M.: An experimental and analytical investigation of the large strain compressive and tensile response of glassy polymers. Polym. Eng. Sci. 30, 1288–1298 (1990) · doi:10.1002/pen.760302005
[40] Shaban A., Mahnken R., Wilke L., Potente H., Ridder H.: Simulation of rate dependent plasticity for polymers with asymmetric effects. Int. J. Solids Struct. 44, 6148–6162 (2007) · Zbl 1178.74025 · doi:10.1016/j.ijsolstr.2007.02.017
[41] G’Sell C., Gopez A.J.: Plastic bending in glassy polycorbonate under plane simple shear. J. Mater. Sci. 20, 3462–3478 (1985) · doi:10.1007/BF01113753
[42] Boyce M.C., Arruda E.M., Jayachandran J.: The large compression, tension, and simple shear of polycarbonate. Polym. Eng. Sci. 34(9), 716–725 (1994) · doi:10.1002/pen.760340904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.