×

Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. (English) Zbl 0764.73088

This paper presents a complete formulation of a model of coupled associative thermoplasticity at finite strains, addresses in detail the numerical analysis aspects involved in its finite element implementation. On the thermomechanical side, novel aspects of the proposed model of thermoplasticity are (1) the explicit characterization of the plastic (configurational) entropy as an independent internal variable, (2) a thermomechanical extension of the principle of maximum dissipation, (3) the exploitation of this extended principle in the formulation of an associative flow, (4) a new global product formula algorithm, (5) a unified class of local return mapping algorithms, and (6) the formulation of a mixed finite element method in terms of the elastic entropy.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74A15 Thermodynamics in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74C20 Large-strain, rate-dependent theories of plasticity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dillon, O. W., Coupled thermoplasticity, J. Mech. Phys. Solids, 11, 21-33 (1963) · Zbl 0108.37004
[2] Mandel, J., Thermodynamics and plasticity, (Domingers, J. J.Delgado; Nina, N. R.; Whitelaw, J. H., Foundations of Continuum Thermodynamics (1974), Macmillan: Macmillan London), 283-304
[3] Coleman, B. D.; Owen, D. R., On the thermodynamics of elastic plastic materials with temperature dependent moduli and yield stresses, Arch. Rational Mech. Anal., 70, 339-354 (1979) · Zbl 0441.73007
[4] Lehmann, T., General frame for the definition of constitutive laws for large non-isothermal elastic-plastic and elastic-viscoplastic deformations, (Lehmann, T., The Constitutive Law in Thermoplasticity. The Constitutive Law in Thermoplasticity, CISM Courses and Lectures No. 281 (1982), Springer: Springer Berlin) · Zbl 0562.73035
[5] Lee, E. H., Elastic-plastic deformation at finite strains, J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[6] Asaro, R., Micromechanics of crystals and polycrystals, Adv. in Appl. Mech., 23, 1-115 (1983)
[7] Cottrell, A. H., Dislocations and Plastic Flow in Crystals (1967), Oxford Univ. Press: Oxford Univ. Press London · Zbl 0052.23707
[8] Hill, R. E.Reed, Physical Metallurgy Principles (1964), Van Nostrand Reinhold: Van Nostrand Reinhold New York
[9] Hill, R., The Mathematical Theory of Plasticity (1950), Clarendon Press: Clarendon Press Oxford · Zbl 0041.10802
[10] Duvaut, G.; Lions, J. L., Les Inequations en Mecanique et en Physique (1972), Dunod: Dunod Paris · Zbl 0298.73001
[11] Johnson, C., Existency theorems for plasticity problems, J. De Math. Pures Appl., 55, 431-444 (1976) · Zbl 0351.73049
[12] Johnson, C., On plasticity with hardening, J. Appl. Math. Anal., 62, 325-336 (1978) · Zbl 0373.73049
[13] Moreau, J. J., Application of convex analysis to the treatment of elastoplastic systems, (Germain, P.; Nayroles, B., Applications of Methods of Functional Analysis to Problems in Mechanics (1976), Springer: Springer Berlin) · Zbl 0337.73004
[14] Moreau, J. J., Evolution problem associated with a moving convex set in a Hilbert Space, J. Differential Equations, 26, 347-374 (1977) · Zbl 0356.34067
[15] Matthies, H., Existence theorems in thermo-plasticity, J. Mécanique, 18, 4, 695-711 (1979)
[16] Suquet, P., Sur les eq́uations de la plasticite, Ann. Fac. Sci. Tolouse, 1, 77-87 (1979) · Zbl 0405.46027
[17] Demengel, F., Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Arch. Rational Mech. Anal., 105, 2, 123-161 (1989) · Zbl 0669.73030
[18] Argyris, J. H.; Doltsinis, J. St.; Pimenta, P. M.; Wüstenberg, H., Thermomechanical response of solids at high strains - natural approach, Comput. Methods Appl. Mech. Engrg., 32, 3-57 (1982) · Zbl 0505.73062
[19] Lubliner, J., Normality rules in large-deformation plasticity, Mech. Mater., 5, 29-34 (1986)
[20] Simo, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation, Comput. Methods Appl. Mech. Engrg., 66, 199-219 (1988) · Zbl 0611.73057
[21] Agah-Tehrani, A.; Lee, E. H.; Mallet, R. L.; Onat, E. T., The theory of elastic-plastic deformation at finite strain with induced anisotropy modeled at combined isotropic-kinematic hardening, Metal Forming Report, R.P.I. (June 1986)
[22] Ziegler, H., Some extremum principles in irreversible thermodynamics with application to continuum mechanics, (Sneddon, I. N.; Hill, R., Progress in Solid Mechanics, 4 (1963), North-Holland: North-Holland Amsterdam)
[23] Taylor, G. I.; Quinney, M. A., The latent energy remaining in a metal after cold working, (Proc. Roy. Soc. London Ser. A, A 143 (1933)), 307
[24] Bever, M. B.; Holt, D. L.; Titchener, A. L., The Stored Energy of Cold Work (1973), Pergamon: Pergamon Oxford
[25] F. Armero and J.C. Sumo, A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems, Internat. J. Numer. Methods Engrg., in press. (Also SUDAM Report No. 91-5, Stanford University).; F. Armero and J.C. Sumo, A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems, Internat. J. Numer. Methods Engrg., in press. (Also SUDAM Report No. 91-5, Stanford University).
[26] Kim, S. J.; Oden, J. T., Finite element analysis of a class of problems in finite elastoplasticity based on the thermodynamical theory of materials of type N, Comput. Methods Appl. Mech. Engrg., 53, 277-302 (1985) · Zbl 0552.73066
[27] Lubliner, J., Non-isothermal generalized plasticity, (Bui, H. D.; Nguyen, Q. S., Thermomechanical Couplings in Solids. Thermomechanical Couplings in Solids, IUTAM 1986 (1987), North-Holland: North-Holland Amsterdam) · Zbl 0665.73026
[28] Oden, J. T., Finite Elements of Nonlinear Continue (1972), McGraw-Hill: McGraw-Hill New York · Zbl 0235.73038
[29] Ortega, J. M.; Rheinboldt, W. T., Iterative Solution of Nonlinear Equations in Several Variables (1972), Academic Press: Academic Press New York
[30] Luenberger, D. G., Linear and nonlinear programming (1984), Addison-Wesly: Addison-Wesly Reading, MA · Zbl 0241.90052
[31] Argyris, J. H.; Doltsinis, J. St., On the natural formulation and analysis of large deformation coupled thermomechanical problems, Comput. Methods Appl. Mech. Engrg., 25, 195-253 (1981) · Zbl 0489.73126
[32] Park, K. C.; Felippa, C. A., Partitioned analysis of coupled problems, (Belytschko, T.; Hughes, T. J.R., Computational Methods in Transient Analysis (1983), North-Holland: North-Holland Amsterdam) · Zbl 0546.73063
[33] Argyris, J. H.; Vaz, L. E.; Willam, K. J., Integrated finite-element analysis of coupled viscoplastic problems, J. Thermal Stresses, 4, 121-153 (1981)
[34] Lemonds, J.; Needleman, A., Finite element analysis of shear localization in rate and temperature dependent solids, Mech. Mater., 5, 339-361 (1986)
[35] Doltsinis, I. St., Aspects of modelling and computation in the analysis of metal forming, Engrg. Comp., 7, 1, 2-13 (1990)
[36] Chorin, A. J., On the convergence of discrete approximations to the Navier Stokes equations, Math. Comp., 23, 341-353 (1969) · Zbl 0184.20103
[37] Marsden, J., A formula for the solution of the Navier Stokes equations based on a method of Chorin, Bull. Amer. Math. Soc., 80, 154-158 (1974) · Zbl 0277.35080
[38] Marsden, J., Applications of Global Analysis in Mathematical Physics (1974), Publish/Perish: Publish/Perish Boston · Zbl 0367.58001
[39] Ortiz, M.; Pinsky, P. M.; Taylor, R. L., Unconditionally stable element-by-element algorithms for dynamic problems, Comput. Methods Appl. Mech. Engrg., 36, 223-239 (1983) · Zbl 0501.73068
[40] Hughes, T. J.R.; Levi, I.; Winget, I., Element-by-element implicit algorithms for heat conduction, J. Engrg. Mech., 109, 2, 576-585 (1983)
[41] Hughes, T. J.R.; Levi, I.; Winget, J., An element-by-element solution algorithm for problems of structural and solid mechanics, Comput. Methods Appl. Mech. Engrg., 36, 2, 241-254 (1983) · Zbl 0487.73083
[42] Simo, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: Computational aspects, Comput. Methods Appl. Mech. Engrg., 68, 1-31 (1988) · Zbl 0644.73043
[43] Simo, J. C., Nonlinear stability of the time-discrete variational problem in nonlinear heat conduction, plasticity and elastoplasticity, Comput. Methods Appl. Mech. Engrg., 88, 111-131 (1991) · Zbl 0751.73066
[44] Wilkins, M. L., Calculation of elastic-plastic flow, (Meth. Comput. Phys., 3 (1964), Academic Press: Academic Press New York)
[45] Nagtegaal, J. C.; Parks, D. M.; Rice, J. R., On numerically accurate finite element solutions in the fully plastic range, Comput. Methods Appl. Mech. Engrg., 4, 153-177 (1974) · Zbl 0284.73048
[46] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[47] Brezzi, F.; Fortin, M., Mixed and Hibrid Finite Element Methods (1990), Springer: Springer Berlin
[48] Miehe, C., Numerical treatment of thermomechanical processes (in German), (Dissertation, IBNM (1988), Universität Hännover)
[49] Coleman, B. D.; Gurtin, M. E., Thermodynamics with internal state variables, J. Chem. Phys., 47, 597-613 (1967)
[50] Truesdell, C.; Noll, W., The nonlinear field theories of mechanics, (Fluegge, S., Handbucch der Physik, Bd. III/3 (1965), Springer: Springer Berlin) · Zbl 0779.73004
[51] Coleman, B. D.; Noll, W., The thermodynamic of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13, 167-178 (1963) · Zbl 0113.17802
[52] Koiter, W. T., General theorems for elastic-plastic solids, Progress in Solid Mechanics, 1, 167-221 (1960), Chapter 4
[53] Simo, J. C.; Kennedy, J. G.; Govindjee, S., General return mapping algorithms for multisurface plasticity and viscoplasticity, Internat. J. Numer. Methods Engrg., 26, 2161-2185 (1988) · Zbl 0661.73058
[54] Simo, J. C., On the computational significance of the intermediate configuration and hyperelastic relations in finite deformation plasticity, Mech. Mater., 4, 439-451 (1985)
[55] Moran, B.; Ortiz, M.; Shih, C. F., Formulation of implicit finite element methods for multiplicative deformation plasticity, Internat. J. Numer. Methods Engrg., 29, 483-514 (1990) · Zbl 0724.73221
[56] McClintock, F. A.; Argon, A. S., Mechanical Behaviour of Materials (1968), Addison-Wesley: Addison-Wesley Reading, MA
[57] Green, A. E.; Naghdi, P. M., A thermodynamic development of elastic-plastic continua, (Parkus, H.; Sedov, L. I., Irreversible Aspects of Continuum Mechanics, IUTAM Symp.. Irreversible Aspects of Continuum Mechanics, IUTAM Symp., Vienna (1966), Springer: Springer Berlin) · Zbl 0179.55601
[58] Rice, J. R., Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433-455 (1971) · Zbl 0235.73002
[59] Germain, P.; Nguyen, Q. S.; Suquet, P., Continuum thermodynamics, ASME Trans., 50, 1010-1020 (1983) · Zbl 0536.73004
[60] Manjoine, M. E., Influence of rate of strain and temperature on yield stress of mild steel, J. Appl. Mech., 11, 211-218 (1944)
[61] Phillips, A., The foundation of thermoplasticity - Experiments and theory, (Zeman, J. L.; Ziegler, F., Topics in Applied Continuum Mechanics (1974), Springer: Springer Wien) · Zbl 0285.73028
[62] Zdebel, U.; Lehmann, T., Some theoretical considerations and experimental investigations on a constitutive law in thermoplasticity, Internat. J. Plasticity, 3, 369-389 (1987) · Zbl 0628.73129
[63] Carlson, D. E., Linear thermoelasticity, (Fluegge, S., Handbuch der Physik, Bd. VI/2a (1972), Springer: Springer Berlin), 297-346
[64] Strang, G., Approximating semigroups and the consistency of difference schemes, (Proc. Amer. Math. Soc., 20 (1969)), 1-7 · Zbl 0177.16903
[65] Eterovic, A. L.; Bathe, K. J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures, Internat. J. Numer. Methods Engrg., 30, 6, 1099-1115 (1990) · Zbl 0714.73035
[66] Simo, J. C.; Hughes, T. J.R., Elastoplasticity and viscoplasticity - Computational aspects, (Springer Ser. Appl. Math. (1989), Springer: Springer Berlin) · Zbl 0934.74003
[67] Marsden, J., On product formulas for nonlinear semigroups, J. Functional Anal., 13, 51-72 (1973) · Zbl 0258.47042
[68] Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial Value Problems (1967), Interscience: Interscience New York · Zbl 0155.47502
[69] Chorin, A. J.; Hughes, T. J.R.; Marsden, J. E.; McCracken, M., Product formulas and numerical algorithms, Comm. Pure and Appl Math., XXXI, 205-256 (1978) · Zbl 0358.65082
[70] Kato, T., On the Trotter-Lie product formula, (Proc. Japan Acad., 50 (1974)), 694-698 · Zbl 0336.47018
[71] Fung, Y. C., Foundations of Solid Mechanics, (Prentice-Hall Internation Series in Dynamics (1965), Prentice Hall: Prentice Hall Englewood Cliffs, NJ) · Zbl 0649.92006
[72] Bronstein, I. N.; Semendyayev, S., (Handbook of Mathematics (1985), Van Nostrand Reinhold: Van Nostrand Reinhold New York)
[73] Lee and Liu (1968).; Lee and Liu (1968).
[74] Zienkiewicz, O. C.; Taylor, R. L., (The Finite Element Methods, Vol. 1 (1989), McGraw-Hill: McGraw-Hill London)
[75] Argyris, J. H.; Doltsinis, J. St., On the large strain inelastic analysis in natural formulation - Part I. Quasistatic problems, Comput. Methods Appl. Mech. Engrg., 20, 213-251 (1979) · Zbl 0437.73065
[76] Simo, J. C.; Ortiz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods Appl. Mech. Engrg., 49, 221-245 (1985) · Zbl 0566.73035
[77] Taylor, L. M.; Becker, E. B., Some computational aspects of large deformation rate-dependent plastic problems, Comput. Methods Appl. Mech. Engrg., 41, 251-277 (1983) · Zbl 0509.73046
[78] Needleman, A., A numerical study of necking in circular bars, J. Mech. Phys. Solids, 20, 111-127 (1972) · Zbl 0236.73077
[79] Lehmann, T.; Blix, U., On the coupled thermo-mechanical process in the necking problem, Internat. J. Plasticity, 1, 175-188 (1985)
[80] Wriggers, P.; Miehe, C.; Kleiber, M.; Simo, J. C., On the coupled thermomechanical treatment of necking problems via finite-element-methods, Internat. J. Numer. Methods Engrg., 33, 869-883 (1992) · Zbl 0760.73070
[81] Simo, J. C.; Taylor, R. L.; Wriggers, P., Numerical implementaton of pressure dependent loading boundary loading, Commun. Appl. Numer. Methods, 7, 513-525 (1991) · Zbl 0735.73080
[82] Simo, J. C.; Marsden, J. E., On the rotated stress tensor and the mathematical version of the Doyle-Eriksen formula, Arch. Rational Mech. Anal., 86, 3, 213-231 (1986) · Zbl 0567.73003
[83] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1983), Prentice Hall: Prentice Hall Englewood Cliff, NJ · Zbl 0545.73031
[84] Miehe, C.; Stein, E.; Wriggers, P., A general concept for thermomechanical coupling, (Proc. Internat. Conf. Computational Engineering Science (ICES) (1988), Springer: Springer Berlin)
[85] Simo, J. C.; Pister, K. S., Remarks on rate constitutive equations for finite deformation problems: Computational implications, Comput. Methods Appl. Mech. Engrg., 46, 201-215 (1984) · Zbl 0525.73042
[86] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Engrg., 48, 101-118 (1985) · Zbl 0535.73025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.