Cabral, Hildeberto E.; Carvalho, Adecarlos C. Parametric stability of a charged pendulum with oscillating suspension point. (English) Zbl 07330794 J. Differ. Equations 284, 23-38 (2021). MSC: 37N05 70H14 70J40 70J25 PDF BibTeX XML Cite \textit{H. E. Cabral} and \textit{A. C. Carvalho}, J. Differ. Equations 284, 23--38 (2021; Zbl 07330794) Full Text: DOI
Schulz, Volker H. Book review of: A. J. Hahn, Basic calculus of planetary orbits and interplanetary flight. The missions of the Voyagers, Cassini, and Juno. (English) Zbl 1455.00022 SIAM Rev. 63, No. 1, 244-245 (2021). MSC: 00A17 85-01 85A05 70-01 70F15 70F05 70M20 70P05 70H40 70H14 83C10 PDF BibTeX XML Cite \textit{V. H. Schulz}, SIAM Rev. 63, No. 1, 244--245 (2021; Zbl 1455.00022)
Markeev, A. P.; Chekhovskaya, T. N. On nonlinear oscillations and stability of coupled pendulums in the case of a multiple resonance. (English) Zbl 07319346 Nelineĭn. Din. 16, No. 4, 607-623 (2020). MSC: 70E55 70H09 70H14 PDF BibTeX XML Cite \textit{A. P. Markeev} and \textit{T. N. Chekhovskaya}, Nelineĭn. Din. 16, No. 4, 607--623 (2020; Zbl 07319346) Full Text: DOI MNR
Albouy, Alain; Dullin, Holger R. Relative equilibria of the 3-body problem in \(\mathbb{R}^4\). (English) Zbl 07300128 J. Geom. Mech. 12, No. 3, 323-341 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37N05 70F10 70F15 70H14 70H33 53D20 PDF BibTeX XML Cite \textit{A. Albouy} and \textit{H. R. Dullin}, J. Geom. Mech. 12, No. 3, 323--341 (2020; Zbl 07300128) Full Text: DOI
Gidea, Marian; de la Llave, Rafael; Seara, Tere M. A general mechanism of instability in Hamiltonian systems: skipping along a normally hyperbolic invariant manifold. (English) Zbl 1454.37054 Discrete Contin. Dyn. Syst. 40, No. 12, 6795-6813 (2020). MSC: 37J25 37J39 37J06 70H14 70K20 70K50 PDF BibTeX XML Cite \textit{M. Gidea} et al., Discrete Contin. Dyn. Syst. 40, No. 12, 6795--6813 (2020; Zbl 1454.37054) Full Text: DOI
Yumagulov, M. G.; Ibragimova, L. S.; Belova, A. S. Approximate research of problems on perturbation of periodic and autonomous Hamiltonian systems in critical cases. (English) Zbl 07272852 Lobachevskii J. Math. 41, No. 9, 1924-1931 (2020). Reviewer: Zdzisław Dzedzej (Gdańsk) MSC: 37J40 37J46 37J25 37J20 70H14 PDF BibTeX XML Cite \textit{M. G. Yumagulov} et al., Lobachevskii J. Math. 41, No. 9, 1924--1931 (2020; Zbl 07272852) Full Text: DOI
Wang, Jiahang; Bao, Siyuan Two kinds of generalized gradient representations for Birkhoffian system in the event space. (Chinese. English summary) Zbl 07266670 J. Cent. China Norm. Univ., Nat. Sci. 54, No. 2, 174-177 (2020). MSC: 37J25 70H14 PDF BibTeX XML Cite \textit{J. Wang} and \textit{S. Bao}, J. Cent. China Norm. Univ., Nat. Sci. 54, No. 2, 174--177 (2020; Zbl 07266670) Full Text: DOI
Zubelevich, O. On periodic solutions to Lagrangian system with singularities and constraints. (English) Zbl 1455.37051 Lobachevskii J. Math. 41, No. 3, 459-473 (2020). Reviewer: Giovanni Rastelli (Vercelli) MSC: 37J46 37J12 70H03 70H12 70H14 PDF BibTeX XML Cite \textit{O. Zubelevich}, Lobachevskii J. Math. 41, No. 3, 459--473 (2020; Zbl 1455.37051) Full Text: DOI
Kapitula, Todd; Parker, Ross; Sandstede, Björn A reformulated Krein matrix for star-even polynomial operators with applications. (English) Zbl 1450.35207 SIAM J. Math. Anal. 52, No. 5, 4705-4750 (2020). MSC: 35P30 47A55 47A56 70H14 PDF BibTeX XML Cite \textit{T. Kapitula} et al., SIAM J. Math. Anal. 52, No. 5, 4705--4750 (2020; Zbl 1450.35207) Full Text: DOI
Hu, Xijun; Portaluri, Alessandro; Xing, Qin Morse index and stability of the planar N-vortex problem. (English) Zbl 07259120 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 76, 39 p. (2020). MSC: 70H14 70F15 37J25 34D20 37N10 76B47 PDF BibTeX XML Cite \textit{X. Hu} et al., Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 76, 39 p. (2020; Zbl 07259120) Full Text: DOI
Wei, Ruoyu; Cao, Jinde; Huang, Chuangxia Lagrange exponential stability of quaternion-valued memristive neural networks with time delays. (English) Zbl 1451.34093 Math. Methods Appl. Sci. 43, No. 12, 7269-7291 (2020). MSC: 34K20 70H14 92B20 94C60 PDF BibTeX XML Cite \textit{R. Wei} et al., Math. Methods Appl. Sci. 43, No. 12, 7269--7291 (2020; Zbl 1451.34093) Full Text: DOI
Palamodov, Viktor P. On inversion of the Lagrange-Dirichlet theorem and instability of conservative systems. (English. Russian original) Zbl 07244023 Russ. Math. Surv. 75, No. 3, 495-508 (2020); translation from Usp. Mat. Nauk 75, No. 3, 107-122 (2020). MSC: 70H14 34D20 37N05 PDF BibTeX XML Cite \textit{V. P. Palamodov}, Russ. Math. Surv. 75, No. 3, 495--508 (2020; Zbl 07244023); translation from Usp. Mat. Nauk 75, No. 3, 107--122 (2020) Full Text: DOI
Ureña, Antonio J. To what extent are unstable the maxima of the potential? (English) Zbl 1453.37055 Ann. Mat. Pura Appl. (4) 199, No. 5, 1763-1775 (2020). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 37J25 37J12 37J46 70H14 70K20 70H12 70K42 PDF BibTeX XML Cite \textit{A. J. Ureña}, Ann. Mat. Pura Appl. (4) 199, No. 5, 1763--1775 (2020; Zbl 1453.37055) Full Text: DOI
Bardin, Boris S.; Lanchares, Víctor Stability of a one-degree-of-freedom canonical system in the case of zero quadratic and cubic part of a Hamiltonian. (English) Zbl 1450.37051 Regul. Chaotic Dyn. 25, No. 3, 237-249 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J25 37J40 37J46 70H05 70H12 70H14 PDF BibTeX XML Cite \textit{B. S. Bardin} and \textit{V. Lanchares}, Regul. Chaotic Dyn. 25, No. 3, 237--249 (2020; Zbl 1450.37051) Full Text: DOI
Horwitz, Lawrence; Strauss, Yossef Unstable systems. (English) Zbl 1436.81051 Mathematical Physics Studies. Cham: Springer (ISBN 978-3-030-31569-6/hbk; 978-3-030-31570-2/ebook). x, 221 p. (2020). MSC: 81Q50 81Q10 70K55 70H14 PDF BibTeX XML Cite \textit{L. Horwitz} and \textit{Y. Strauss}, Unstable systems. Cham: Springer (2020; Zbl 1436.81051) Full Text: DOI
Strzelecki, Daniel Periodic solutions of symmetric Hamiltonian systems. (English) Zbl 1441.37062 Arch. Ration. Mech. Anal. 237, No. 2, 921-950 (2020). MSC: 37J25 37J39 70H14 PDF BibTeX XML Cite \textit{D. Strzelecki}, Arch. Ration. Mech. Anal. 237, No. 2, 921--950 (2020; Zbl 1441.37062) Full Text: DOI
Verhulst, Ferdinand Henri Poincaré’s neglected ideas. (English) Zbl 1445.37037 Discrete Contin. Dyn. Syst., Ser. S 13, No. 4, 1411-1427 (2020). Reviewer: Anatoly Martynyuk (Kyïv) MSC: 37J25 37J46 37J35 70K30 70H14 PDF BibTeX XML Cite \textit{F. Verhulst}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 4, 1411--1427 (2020; Zbl 1445.37037) Full Text: DOI
Markeev, Anatoly P. On periodic Poincaré motions in the case of degeneracy of an unperturbed system. (English) Zbl 1434.70040 Regul. Chaotic Dyn. 25, No. 1, 111-120 (2020). MSC: 70H05 70H12 70H14 PDF BibTeX XML Cite \textit{A. P. Markeev}, Regul. Chaotic Dyn. 25, No. 1, 111--120 (2020; Zbl 1434.70040) Full Text: DOI
Tudoran, Răzvan M.; Gîrban, Anania On the rattleback dynamics. (English) Zbl 1439.37065 J. Math. Anal. Appl. 488, No. 1, Article ID 124066, 21 p. (2020). MSC: 37J46 37J39 37J25 70H14 70G45 PDF BibTeX XML Cite \textit{R. M. Tudoran} and \textit{A. Gîrban}, J. Math. Anal. Appl. 488, No. 1, Article ID 124066, 21 p. (2020; Zbl 1439.37065) Full Text: DOI
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent Super-exponential stability for generic real-analytic elliptic equilibrium points. (English) Zbl 1442.37071 Adv. Math. 366, Article ID 107088, 30 p. (2020). Reviewer: Anatoly Martynyuk (Kyïv) MSC: 37J25 70H14 PDF BibTeX XML Cite \textit{A. Bounemoura} et al., Adv. Math. 366, Article ID 107088, 30 p. (2020; Zbl 1442.37071) Full Text: DOI
Hahn, Alexander J. Basic calculus of planetary orbits and interplanetary flight. The missions of the Voyagers, Cassini, and Juno. (English) Zbl 1444.85001 Cham: Springer (ISBN 978-3-030-24867-3/hbk; 978-3-030-24868-0/ebook). xiv, 375 p. (2020). Reviewer: Vladimir Čadež (Beograd) MSC: 85-01 85A05 70-01 70F15 70F05 70M20 70P05 70H40 70H14 83C10 PDF BibTeX XML Cite \textit{A. J. Hahn}, Basic calculus of planetary orbits and interplanetary flight. The missions of the Voyagers, Cassini, and Juno. Cham: Springer (2020; Zbl 1444.85001) Full Text: DOI
Pavelka, Michal; Klika, Václav; Grmela, Miroslav Ehrenfest regularization of Hamiltonian systems. (English) Zbl 1453.70008 Physica D 399, 193-210 (2019). MSC: 70H05 80A10 70E15 70H14 PDF BibTeX XML Cite \textit{M. Pavelka} et al., Physica D 399, 193--210 (2019; Zbl 1453.70008) Full Text: DOI
Kholostova, Ol’ga Vladimirovna On multiple fourth-order resonances in a nonautonomous two-degree-of-freedom Hamiltonian system. (Russian. English summary) Zbl 07213785 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 29, No. 2, 275-294 (2019). MSC: 70H08 70H12 70H14 70H15 70M20 PDF BibTeX XML Cite \textit{O. V. Kholostova}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 29, No. 2, 275--294 (2019; Zbl 07213785) Full Text: DOI MNR
Markeev, Anatoliĭ Pavlovich On periodic motions of a rigid body suspended on a thread in a uniform gravity field. (Russian. English summary) Zbl 07213783 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 29, No. 2, 245-260 (2019). MSC: 70E20 70H14 70K28 PDF BibTeX XML Cite \textit{A. P. Markeev}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 29, No. 2, 245--260 (2019; Zbl 07213783) Full Text: DOI MNR
Markeev, Anatoly P. On the stability of the regular precession of an asymmetric gyroscope at a second-order resonance. (English) Zbl 1432.70014 Regul. Chaotic Dyn. 24, No. 5, 502-510 (2019). MSC: 70E17 70E50 70H14 PDF BibTeX XML Cite \textit{A. P. Markeev}, Regul. Chaotic Dyn. 24, No. 5, 502--510 (2019; Zbl 1432.70014) Full Text: DOI
Borisov, Alexey V.; Kilin, Alexander A.; Mamaev, Ivan S. A parabolic Chaplygin pendulum and a Paul trap: nonintegrability, stability, and boundedness. (English) Zbl 1435.37079 Regul. Chaotic Dyn. 24, No. 3, 329-352 (2019). MSC: 37J25 70H14 70H06 70F40 70B05 PDF BibTeX XML Cite \textit{A. V. Borisov} et al., Regul. Chaotic Dyn. 24, No. 3, 329--352 (2019; Zbl 1435.37079) Full Text: DOI
Kholostova, Olga V. On the motions of one near-autonomous Hamiltonian system at a 1:1:1 resonance. (English) Zbl 1428.70037 Regul. Chaotic Dyn. 24, No. 3, 235-265 (2019). MSC: 70H08 70H12 70H14 70H15 70M20 PDF BibTeX XML Cite \textit{O. V. Kholostova}, Regul. Chaotic Dyn. 24, No. 3, 235--265 (2019; Zbl 1428.70037) Full Text: DOI
Kishor, Ram; Raj, M. Xavier James; Ishwar, Bhola Normalization of Hamiltonian and nonlinear stability of triangular equilibrium points in the photogravitational restricted three body problem with P-R drag in non-resonance case. (English) Zbl 1454.70007 Qual. Theory Dyn. Syst. 18, No. 3, 1055-1075 (2019). MSC: 70H14 37J40 70F07 PDF BibTeX XML Cite \textit{R. Kishor} et al., Qual. Theory Dyn. Syst. 18, No. 3, 1055--1075 (2019; Zbl 1454.70007) Full Text: DOI
Yumagulov, M. G. Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem. (English. Russian original) Zbl 1455.70007 J. Math. Sci., New York 241, No. 3, 364-378 (2019); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 139, 114-127 (2017). MSC: 70F07 70H14 34D20 34C23 37G10 PDF BibTeX XML Cite \textit{M. G. Yumagulov}, J. Math. Sci., New York 241, No. 3, 364--378 (2019; Zbl 1455.70007); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 139, 114--127 (2017) Full Text: DOI
Bardin, Boris S.; Chekina, Evgeniya A. On the constructive algorithm for stability analysis of an equilibrium point of a periodic Hamiltonian system with two degrees of freedom in the case of combinational resonance. (English) Zbl 1430.37060 Regul. Chaotic Dyn. 24, No. 2, 127-144 (2019). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 37J25 37J11 37J40 70K30 70K45 70H14 PDF BibTeX XML Cite \textit{B. S. Bardin} and \textit{E. A. Chekina}, Regul. Chaotic Dyn. 24, No. 2, 127--144 (2019; Zbl 1430.37060) Full Text: DOI
Wang, Jiahang; Zhang, Yi Triple combined gradient system representations for autonomous generalized Birkhoffian system. (Chinese. English summary) Zbl 1438.70015 J. Yunnan Univ., Nat. Sci. 41, No. 3, 497-502 (2019). MSC: 70H14 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Y. Zhang}, J. Yunnan Univ., Nat. Sci. 41, No. 3, 497--502 (2019; Zbl 1438.70015) Full Text: DOI
Elgressy, Gil; Horwitz, Lawrence Geometry of quantum Riemannian Hamiltonian evolution. (English) Zbl 1416.81023 J. Math. Phys. 60, No. 7, 072102, 10 p. (2019). MSC: 81P20 81Q05 70H05 70H14 PDF BibTeX XML Cite \textit{G. Elgressy} and \textit{L. Horwitz}, J. Math. Phys. 60, No. 7, 072102, 10 p. (2019; Zbl 1416.81023) Full Text: DOI
Herrmann, Michael; Matthies, Karsten Stability of high-energy solitary waves in Fermi-Pasta-Ulam-Tsingou chains. (English) Zbl 1428.37070 Trans. Am. Math. Soc. 372, No. 5, 3425-3486 (2019). Reviewer: Utkir A. Rozikov (Tashkent) MSC: 37K60 37K40 70H14 74H10 PDF BibTeX XML Cite \textit{M. Herrmann} and \textit{K. Matthies}, Trans. Am. Math. Soc. 372, No. 5, 3425--3486 (2019; Zbl 1428.37070) Full Text: DOI arXiv
Bétermin, Laurent Local optimality of cubic lattices for interaction energies. (English) Zbl 1419.82005 Anal. Math. Phys. 9, No. 1, 403-426 (2019). MSC: 82B20 70H14 82B27 82D25 11E45 PDF BibTeX XML Cite \textit{L. Bétermin}, Anal. Math. Phys. 9, No. 1, 403--426 (2019; Zbl 1419.82005) Full Text: DOI
Kepley, Shane; Mireles James, J. D. Chaotic motions in the restricted four body problem via Devaney’s saddle-focus homoclinic tangle theorem. (English) Zbl 1422.37062 J. Differ. Equations 266, No. 4, 1709-1755 (2019). Reviewer: Maria Gousidou-Koutita (Thessaloniki) MSC: 37N05 37J45 37J15 37J25 70F07 70F10 70H14 PDF BibTeX XML Cite \textit{S. Kepley} and \textit{J. D. Mireles James}, J. Differ. Equations 266, No. 4, 1709--1755 (2019; Zbl 1422.37062) Full Text: DOI arXiv
Kolba, Tiffany; Coniglio, Anthony; Sparks, Sarah; Weithers, Daniel Noise-induced stabilization of perturbed Hamiltonian systems. (English) Zbl 1426.60074 Am. Math. Mon. 126, No. 6, 505-518 (2019). MSC: 60H10 37B25 70H14 PDF BibTeX XML Cite \textit{T. Kolba} et al., Am. Math. Mon. 126, No. 6, 505--518 (2019; Zbl 1426.60074) Full Text: DOI
Santos, Moises S.; Mugnaine, Michele; Szezech, José D. jun.; Batista, Antonio M.; Caldas, Iberê L.; Viana, Ricardo L. Using rotation number to detect sticky orbits in Hamiltonian systems. (English) Zbl 1427.37045 Chaos 29, No. 4, 043125, 5 p. (2019). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 37J25 37E45 70H14 37D45 PDF BibTeX XML Cite \textit{M. S. Santos} et al., Chaos 29, No. 4, 043125, 5 p. (2019; Zbl 1427.37045) Full Text: DOI
Hu, Xijun; Ou, Yuwei; Wang, Penghui Hill-type formula for Hamiltonian system with Lagrangian boundary conditions. (English) Zbl 07058137 J. Differ. Equations 267, No. 4, 2416-2447 (2019). MSC: 34L15 34B09 37C75 70H14 PDF BibTeX XML Cite \textit{X. Hu} et al., J. Differ. Equations 267, No. 4, 2416--2447 (2019; Zbl 07058137) Full Text: DOI arXiv
Qin, Hong A necessary and sufficient condition for the stability of linear Hamiltonian systems with periodic coefficients. (English) Zbl 1446.70039 J. Math. Phys. 60, No. 2, 022901, 15 p. (2019). MSC: 70H14 34D20 PDF BibTeX XML Cite \textit{H. Qin}, J. Math. Phys. 60, No. 2, 022901, 15 p. (2019; Zbl 1446.70039) Full Text: DOI
De Bièvre, Stephan; Rota Nodari, Simona Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups. (English) Zbl 1426.70022 Arch. Ration. Mech. Anal. 231, No. 1, 233-284 (2019). MSC: 70H14 53D20 37K05 35B35 35J20 35Q55 PDF BibTeX XML Cite \textit{S. De Bièvre} and \textit{S. Rota Nodari}, Arch. Ration. Mech. Anal. 231, No. 1, 233--284 (2019; Zbl 1426.70022) Full Text: DOI
Markeev, Anatoliĭ P. On nonlinear resonant oscillations of a rigid body generated by its conical precession. (English) Zbl 1419.70009 Nelineĭn. Din. 14, No. 4, 503-518 (2018). MSC: 70H09 70H12 70H14 PDF BibTeX XML Cite \textit{A. P. Markeev}, Nelineĭn. Din. 14, No. 4, 503--518 (2018; Zbl 1419.70009) Full Text: DOI MNR
Belichenko, M. V. On the stability of pendulum-type motions in the approximate problem of dynamics of a Lagrange top with a vibrating suspension point. (English) Zbl 1419.70002 Nelineĭn. Din. 14, No. 2, 243-263 (2018). MSC: 70E17 70E50 70H09 70H14 PDF BibTeX XML Cite \textit{M. V. Belichenko}, Nelineĭn. Din. 14, No. 2, 243--263 (2018; Zbl 1419.70002) Full Text: DOI MNR
Safonov, Alekseĭ Igorevich; Kholostova, Ol’ga Vladimirovna On periodic motions of a symmetric satellite in an orbit with small eccentricity in the case of multiple combinative third and fourth order resonance. (Russian. English summary) Zbl 1422.70011 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 28, No. 3, 373-394 (2018). MSC: 70H05 70H14 70H15 70K45 PDF BibTeX XML Cite \textit{A. I. Safonov} and \textit{O. V. Kholostova}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 28, No. 3, 373--394 (2018; Zbl 1422.70011) Full Text: DOI MNR
Mukharlyamov, R. G. Constructing equations of constrained dynamical systems. (Russian. English summary) Zbl 1409.70009 Din. Sist., Simferopol’ 8(36), No. 1, 63-72 (2018). MSC: 70F20 70H14 PDF BibTeX XML Cite \textit{R. G. Mukharlyamov}, Din. Sist., Simferopol' 8(36), No. 1, 63--72 (2018; Zbl 1409.70009)
Markeev, Anatoliĭ Pavlovich; Sukhoruchkin, Dimitriĭ Andreevich On the dynamics of a pendulum mounted on a movable platform. (Russian. English summary) Zbl 1401.70008 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 28, No. 2, 240-251 (2018). MSC: 70E20 70H14 70K28 PDF BibTeX XML Cite \textit{A. P. Markeev} and \textit{D. A. Sukhoruchkin}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 28, No. 2, 240--251 (2018; Zbl 1401.70008) Full Text: DOI MNR
Fenucci, M.; Gronchi, G. F. On the stability of periodic \(N\)-body motions with the symmetry of platonic polyhedra. (English) Zbl 1433.70021 Nonlinearity 31, No. 11, 4935-4954 (2018). MSC: 70F10 70H14 65G30 37N05 37J51 PDF BibTeX XML Cite \textit{M. Fenucci} and \textit{G. F. Gronchi}, Nonlinearity 31, No. 11, 4935--4954 (2018; Zbl 1433.70021) Full Text: DOI
Sakajo, Takashi; Shimizu, Yuuki Toroidal geometry stabilizing a latitudinal ring of point vortices on a torus. (English) Zbl 1393.76019 J. Nonlinear Sci. 28, No. 3, 1043-1077 (2018). MSC: 76B47 70F10 70H14 37J25 37J45 PDF BibTeX XML Cite \textit{T. Sakajo} and \textit{Y. Shimizu}, J. Nonlinear Sci. 28, No. 3, 1043--1077 (2018; Zbl 1393.76019) Full Text: DOI
Bardin, B. S. On the stability of a periodic Hamiltonian system with one degree of freedom in a transcendental case. (English. Russian original) Zbl 1436.70006 Dokl. Math. 97, No. 2, 161-163 (2018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 479, No. 5, 485-488 (2018). MSC: 70H12 70H14 37J25 34D20 PDF BibTeX XML Cite \textit{B. S. Bardin}, Dokl. Math. 97, No. 2, 161--163 (2018; Zbl 1436.70006); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 479, No. 5, 485--488 (2018) Full Text: DOI
Comănescu, Dan A note on stability of spacecrafts and underwater vehicles. (English) Zbl 06857888 Math. Methods Appl. Sci. 41, No. 4, 1518-1526 (2018). MSC: 34D20 37B25 70E50 70H14 PDF BibTeX XML Cite \textit{D. Comănescu}, Math. Methods Appl. Sci. 41, No. 4, 1518--1526 (2018; Zbl 06857888) Full Text: DOI
Roberts, Gareth E. Morse theory and relative equilibria in the planar \(n\)-vortex problem. (English) Zbl 1390.35351 Arch. Ration. Mech. Anal. 228, No. 1, 209-236 (2018). MSC: 35Q70 70F10 37C25 37N05 70H14 76B47 PDF BibTeX XML Cite \textit{G. E. Roberts}, Arch. Ration. Mech. Anal. 228, No. 1, 209--236 (2018; Zbl 1390.35351) Full Text: DOI
dos Santos, Fabio Normal stability of autonomous and periodic linear Hamiltonian systems. (English) Zbl 1386.37054 Nonlinear Anal., Real World Appl. 41, 401-411 (2018). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J25 70H14 37C75 PDF BibTeX XML Cite \textit{F. dos Santos}, Nonlinear Anal., Real World Appl. 41, 401--411 (2018; Zbl 1386.37054) Full Text: DOI
dos Santos, Fabio; Vidal, Claudio Stability of equilibrium solutions of Hamiltonian systems with \(n\)-degrees of freedom and single resonance in the critical case. (English) Zbl 1386.37055 J. Differ. Equations 264, No. 8, 5152-5179 (2018). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J25 70H14 37C75 34D20 34A25 PDF BibTeX XML Cite \textit{F. dos Santos} and \textit{C. Vidal}, J. Differ. Equations 264, No. 8, 5152--5179 (2018; Zbl 1386.37055) Full Text: DOI
Chulaevsky, Victor The KAM approach to the localization in “haarsch” quasi-periodic media. (English) Zbl 1383.82026 J. Math. Phys. 59, No. 1, 013509, 18 p. (2018). MSC: 82B44 39A70 37C75 70H14 35J10 PDF BibTeX XML Cite \textit{V. Chulaevsky}, J. Math. Phys. 59, No. 1, 013509, 18 p. (2018; Zbl 1383.82026) Full Text: DOI
Belhaq, Mohamed (ed.) Recent trends in applied nonlinear mechanics and physics. Selected papers from CSNDD 2016, the 3rd international conference on structural nonlinear dynamics and diagnosis. (English) Zbl 1375.70005 Springer Proceedings in Physics 199. Cham: Springer (ISBN 978-3-319-63936-9/hbk; 978-3-319-63937-6/ebook). xi, 278 p. (2018). MSC: 70-06 70Kxx 70B15 70H14 00A79 PDF BibTeX XML Cite \textit{M. Belhaq} (ed.), Recent trends in applied nonlinear mechanics and physics. Selected papers from CSNDD 2016, the 3rd international conference on structural nonlinear dynamics and diagnosis. Cham: Springer (2018; Zbl 1375.70005) Full Text: DOI
Gutierrez, Rodrigo; Vidal, Claudio Stability of equilibrium points for a Hamiltonian systems with one degree of freedom in one degenerate case. (English) Zbl 1403.37066 Regul. Chaotic Dyn. 22, No. 7, 880-892 (2017). Reviewer: Yulianna Perepelkina (Moskva) MSC: 37J25 70H14 37J40 PDF BibTeX XML Cite \textit{R. Gutierrez} and \textit{C. Vidal}, Regul. Chaotic Dyn. 22, No. 7, 880--892 (2017; Zbl 1403.37066) Full Text: DOI
Churkina, Tatyana E.; Stepanov, Sergey Y. On the stability of periodic Mercury-type rotations. (English) Zbl 1398.37091 Regul. Chaotic Dyn. 22, No. 7, 851-864 (2017). MSC: 37N05 37J25 37J30 70H05 70H14 70K20 70K45 70K50 PDF BibTeX XML Cite \textit{T. E. Churkina} and \textit{S. Y. Stepanov}, Regul. Chaotic Dyn. 22, No. 7, 851--864 (2017; Zbl 1398.37091) Full Text: DOI
Iñarrea, Manuel; Lanchares, Víctor; Pascual, Ana I.; Elipe, Antonio On the stability of a class of permanent rotations of a heavy asymmetric gyrostat. (English) Zbl 1437.70007 Regul. Chaotic Dyn. 22, No. 7, 824-839 (2017). MSC: 70E17 70E50 70E55 70H14 70K20 37N05 PDF BibTeX XML Cite \textit{M. Iñarrea} et al., Regul. Chaotic Dyn. 22, No. 7, 824--839 (2017; Zbl 1437.70007) Full Text: DOI
Kholostova, Olga V.; Safonov, Alexey I. A study of the motions of an autonomous Hamiltonian system at a 1:1 resonance. (English) Zbl 1433.70032 Regul. Chaotic Dyn. 22, No. 7, 792-807 (2017). MSC: 70H08 70H12 70H14 70H15 70M20 PDF BibTeX XML Cite \textit{O. V. Kholostova} and \textit{A. I. Safonov}, Regul. Chaotic Dyn. 22, No. 7, 792--807 (2017; Zbl 1433.70032) Full Text: DOI
Markeev, Anatoly P. On the stability of periodic motions of an autonomous Hamiltonian system in a critical case of the fourth-order resonance. (English) Zbl 1433.70029 Regul. Chaotic Dyn. 22, No. 7, 773-781 (2017). MSC: 70H05 70H14 70H15 PDF BibTeX XML Cite \textit{A. P. Markeev}, Regul. Chaotic Dyn. 22, No. 7, 773--781 (2017; Zbl 1433.70029) Full Text: DOI
Cui, Jinchao; Liao, Cuicui; Mei, Fengxiang Four kinds of gradient representations of autonomous Birkhoffian systems. (English) Zbl 1399.70013 J. East China Norm. Univ., Nat. Sci. Ed., No. 3, 94-98 (2017). MSC: 70H06 70H14 PDF BibTeX XML Cite \textit{J. Cui} et al., J. East China Norm. Univ., Nat. Sci. Ed. , No. 3, 94--98 (2017; Zbl 1399.70013) Full Text: DOI
Krasinskiĭ, Aleksandr Yakovlevich; Il’ina, Anastasiya Nikolaevina; Krasinskaya, Èsfira Mustafovna Modeling of the ball and beam system dynamics as a nonlinear mechatronic system with geometric constraint. (Russian. English summary) Zbl 1430.70097 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 27, No. 3, 414-430 (2017). MSC: 70Q05 70E50 70H14 PDF BibTeX XML Cite \textit{A. Y. Krasinskiĭ} et al., Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 27, No. 3, 414--430 (2017; Zbl 1430.70097) Full Text: DOI
Kholostova, Ol’ga Vladimirovna On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance. (Russian. English summary) Zbl 1387.70021 Nelineĭn. Din. 13, No. 4, 477-504 (2017). MSC: 70H08 70H12 70H14 70H15 70M20 PDF BibTeX XML Cite \textit{O. V. Kholostova}, Nelineĭn. Din. 13, No. 4, 477--504 (2017; Zbl 1387.70021) Full Text: DOI MNR
de Pera Garcia, Manuel Valentim; Morales, Gerard John Alva A partial reciprocal of Dirichlet Lagrange theorem detected by jets. (English) Zbl 1383.37042 Qual. Theory Dyn. Syst. 16, No. 2, 371-389 (2017). MSC: 37J25 70H14 PDF BibTeX XML Cite \textit{M. V. de Pera Garcia} and \textit{G. J. A. Morales}, Qual. Theory Dyn. Syst. 16, No. 2, 371--389 (2017; Zbl 1383.37042) Full Text: DOI
Demian, Atanasiu Stefan; Wiggins, Stephen Detection of periodic orbits in Hamiltonian systems using Lagrangian descriptors. (English) Zbl 1386.37061 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 14, Article ID 1750225, 9 p. (2017). MSC: 37J45 34C25 34A45 70H14 70H12 PDF BibTeX XML Cite \textit{A. S. Demian} and \textit{S. Wiggins}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 14, Article ID 1750225, 9 p. (2017; Zbl 1386.37061) Full Text: DOI
Yoshimura, Kazuyuki Existence and stability of odd and even parity discrete breathers in Fermi-Pasta-Ulam lattices. (English) Zbl 1391.70053 SIAM J. Appl. Dyn. Syst. 16, No. 4, 2063-2095 (2017). MSC: 70H12 70H14 34A33 34C25 74J30 PDF BibTeX XML Cite \textit{K. Yoshimura}, SIAM J. Appl. Dyn. Syst. 16, No. 4, 2063--2095 (2017; Zbl 1391.70053) Full Text: DOI
Cui, Jinchao; Liao, Cuicui; Wang, Yong Generalized gradient representations of Appell equations and its stability analysis. (Chinese. English summary) Zbl 1389.70010 Trans. Beijing Inst. Technol. 37, No. 2, 216-220 (2017). MSC: 70H14 37J25 PDF BibTeX XML Cite \textit{J. Cui} et al., Trans. Beijing Inst. Technol. 37, No. 2, 216--220 (2017; Zbl 1389.70010) Full Text: DOI
Wang, Jiahang; Zhang, Yi The stability of motion for the generalized Birkhoffian system with constraints. (Chinese. English summary) Zbl 1389.37033 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 41, No. 2, 212-214, 220 (2017). MSC: 37J25 70H14 70H45 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Y. Zhang}, J. Jiangxi Norm. Univ., Nat. Sci. Ed. 41, No. 2, 212--214, 220 (2017; Zbl 1389.37033) Full Text: DOI
Belichenko, Mikhail Valerievich; Kholostova, Ol’ga Vladimirovna On the stability of stationary rotations in the approximate problem of motion of Lagrange’s top with a vibrating suspension point. (English) Zbl 1369.70005 Nelineĭn. Din. 13, No. 1, 81-104 (2017). MSC: 70E17 70E50 70H09 70H14 PDF BibTeX XML Cite \textit{M. V. Belichenko} and \textit{O. V. Kholostova}, Nelineĭn. Din. 13, No. 1, 81--104 (2017; Zbl 1369.70005) Full Text: MNR
Zhou, Qinglong; Long, Yiming The reduction of the linear stability of elliptic Euler-Moulton solutions of the \(n\)-body problem to those of 3-body problems. (English) Zbl 1365.70012 Celest. Mech. Dyn. Astron. 127, No. 4, 397-428 (2017). MSC: 70F10 70H14 70K20 70K42 34C25 70F07 PDF BibTeX XML Cite \textit{Q. Zhou} and \textit{Y. Long}, Celest. Mech. Dyn. Astron. 127, No. 4, 397--428 (2017; Zbl 1365.70012) Full Text: DOI
Kirillov, Oleg; Levi, Mark A Coriolis force in an inertial frame. (English) Zbl 1369.37065 Nonlinearity 30, No. 3, 1109-1119 (2017). Reviewer: Martha Alvarez-Ramirez (México City) MSC: 37J25 37J40 70B05 70E55 70H14 PDF BibTeX XML Cite \textit{O. Kirillov} and \textit{M. Levi}, Nonlinearity 30, No. 3, 1109--1119 (2017; Zbl 1369.37065) Full Text: DOI arXiv
Zhang, Yongchao; Zhou, Qinglong Analytic results for the linear stability of the equilibrium point in Robe’s restricted elliptic three-body problem. (English) Zbl 1412.70017 Discrete Contin. Dyn. Syst. 37, No. 3, 1763-1787 (2017). MSC: 70F07 70H14 70H15 34C25 34D20 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Q. Zhou}, Discrete Contin. Dyn. Syst. 37, No. 3, 1763--1787 (2017; Zbl 1412.70017) Full Text: DOI
Markeev, A. P. The stability of two-link trajectories of a Birkhoff billiard. (English. Russian original) Zbl 1434.70043 J. Appl. Math. Mech. 80, No. 4, 280-289 (2016); translation from Prikl. Mat. Mekh. 80, No. 4, 403-416 (2016). MSC: 70H14 37C83 37J25 PDF BibTeX XML Cite \textit{A. P. Markeev}, J. Appl. Math. Mech. 80, No. 4, 280--289 (2016; Zbl 1434.70043); translation from Prikl. Mat. Mekh. 80, No. 4, 403--416 (2016) Full Text: DOI
Markeyev, A. P. On the problem of the stability of a Hamiltonian system with one degree of freedom on the boundaries of regions of parametric resonance. (English. Russian original) Zbl 1434.70044 J. Appl. Math. Mech. 80, No. 1, 1-6 (2016); translation from Prikl. Mat. Mekh. 80, No. 1, 3-10 (2016). MSC: 70H14 70H12 70H15 PDF BibTeX XML Cite \textit{A. P. Markeyev}, J. Appl. Math. Mech. 80, No. 1, 1--6 (2016; Zbl 1434.70044); translation from Prikl. Mat. Mekh. 80, No. 1, 3--10 (2016) Full Text: DOI
Delis, N.; Contopoulos, G. Analytical and numerical manifolds in a symplectic 4-D map. (English) Zbl 1367.70047 Celest. Mech. Dyn. Astron. 126, No. 4, 313-337 (2016). MSC: 70K28 37D10 70H12 70H14 37M05 PDF BibTeX XML Cite \textit{N. Delis} and \textit{G. Contopoulos}, Celest. Mech. Dyn. Astron. 126, No. 4, 313--337 (2016; Zbl 1367.70047) Full Text: DOI
Safonov, Alekseĭ Igorevich; Kholostova, Ol’ga Vladimirovna On the periodic motions of a Hamiltonian system in the neighborhood of unstable equilibrium in the presence of a double three-order resonance. (Russian. English summary) Zbl 1369.70033 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 26, No. 3, 418-438 (2016). MSC: 70H05 70H14 70H15 70K45 PDF BibTeX XML Cite \textit{A. I. Safonov} and \textit{O. V. Kholostova}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 26, No. 3, 418--438 (2016; Zbl 1369.70033) Full Text: DOI MNR
Cao, Qiupeng; Chen, Xiangwei Stability and bifurcation for a type of non-autonomous generalized Birkhoffian systems. (Chinese. English summary) Zbl 1374.70046 Acta Sci. Nat. Univ. Pekin. 52, No. 4, 653-657 (2016). MSC: 70H14 70H33 PDF BibTeX XML Cite \textit{Q. Cao} and \textit{X. Chen}, Acta Sci. Nat. Univ. Pekin. 52, No. 4, 653--657 (2016; Zbl 1374.70046) Full Text: DOI
Markeev, A. P. On the stability of periodic trajectories of a planar Birkhoff billiard. (English. Russian original) Zbl 1383.37029 Proc. Steklov Inst. Math. 295, 190-201 (2016); translation from Tr. Mat. Inst. Steklova 295, 206-217 (2016). MSC: 37D50 37J25 70H12 70H14 PDF BibTeX XML Cite \textit{A. P. Markeev}, Proc. Steklov Inst. Math. 295, 190--201 (2016; Zbl 1383.37029); translation from Tr. Mat. Inst. Steklova 295, 206--217 (2016) Full Text: DOI
Paleari, Simone; Penati, Tiziano Long time stability of small-amplitude breathers in a mixed FPU-KG model. (English) Zbl 1368.37071 Z. Angew. Math. Phys. 67, No. 6, Article ID 148, 21 p. (2016). MSC: 37J45 70H14 70K45 35Q55 PDF BibTeX XML Cite \textit{S. Paleari} and \textit{T. Penati}, Z. Angew. Math. Phys. 67, No. 6, Article ID 148, 21 p. (2016; Zbl 1368.37071) Full Text: DOI arXiv
Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna Strongly nonlinear waves in locally resonant granular chains. (English) Zbl 1352.37182 Nonlinearity 29, No. 11, 3496-3527 (2016). MSC: 37K60 70K75 70H07 70H12 70H14 34E13 PDF BibTeX XML Cite \textit{L. Liu} et al., Nonlinearity 29, No. 11, 3496--3527 (2016; Zbl 1352.37182) Full Text: DOI
Guzev, Mickhail A.; Dmitriev, Alexandr A. Stability analysis of two coupled oscillators. (English) Zbl 1369.70037 Math. Mech. Complex Syst. 4, No. 2, 139-152 (2016). MSC: 70H14 70E55 PDF BibTeX XML Cite \textit{M. A. Guzev} and \textit{A. A. Dmitriev}, Math. Mech. Complex Syst. 4, No. 2, 139--152 (2016; Zbl 1369.70037) Full Text: DOI
Barry, Anna M.; Hoyer-Leitzel, Alanna Existence, stability, and symmetry of relative equilibria with a dominant vortex. (English) Zbl 1396.70021 SIAM J. Appl. Dyn. Syst. 15, No. 4, 1783-1805 (2016). MSC: 70H14 70F15 70H12 76B47 13P10 PDF BibTeX XML Cite \textit{A. M. Barry} and \textit{A. Hoyer-Leitzel}, SIAM J. Appl. Dyn. Syst. 15, No. 4, 1783--1805 (2016; Zbl 1396.70021) Full Text: DOI arXiv
Schmidt, Dieter; Valeriano, Lucas Nonlinear stability of stationary points in the problem of Robe. (English) Zbl 1404.70030 Discrete Contin. Dyn. Syst., Ser. B 21, No. 6, 1917-1936 (2016). MSC: 70F07 70H14 37N05 70H08 PDF BibTeX XML Cite \textit{D. Schmidt} and \textit{L. Valeriano}, Discrete Contin. Dyn. Syst., Ser. B 21, No. 6, 1917--1936 (2016; Zbl 1404.70030) Full Text: DOI
Ruggiero, Rafael O.; Rifford, Ludovic; Lazrag, Ayadi Franks’ lemma for \(C^2\)-Mañé perturbations of Riemannian metrics and applications to persistence. (English) Zbl 1345.93044 J. Mod. Dyn. 10, 379-411 (2016). MSC: 93B27 49Q20 37C20 70G45 70H14 PDF BibTeX XML Cite \textit{R. O. Ruggiero} et al., J. Mod. Dyn. 10, 379--411 (2016; Zbl 1345.93044) Full Text: DOI
Féjoz, J.; Guardia, M. Secular instability in the three-body problem. (English) Zbl 1382.70007 Arch. Ration. Mech. Anal. 221, No. 1, 335-362 (2016). MSC: 70F07 70E50 70F10 70F15 70H14 PDF BibTeX XML Cite \textit{J. Féjoz} and \textit{M. Guardia}, Arch. Ration. Mech. Anal. 221, No. 1, 335--362 (2016; Zbl 1382.70007) Full Text: DOI arXiv
Zhang, Yi A gradient representation for a type of non-autonomous Birkhoffian systems. (Chinese. English summary) Zbl 1349.70035 J. Suzhou Univ. Sci. Technol., Nat. Sci. 32, No. 4, 1-3, 8 (2015). MSC: 70H06 70H14 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Suzhou Univ. Sci. Technol., Nat. Sci. 32, No. 4, 1--3, 8 (2015; Zbl 1349.70035)
Guzev, Mikhail A.; Dmitriev, Aleksandr A. A modified model of coupled pendulums. (Russian) Zbl 1369.70009 Nelineĭn. Din. 11, No. 4, 709-720 (2015). MSC: 70E55 70H12 70H14 PDF BibTeX XML Cite \textit{M. A. Guzev} and \textit{A. A. Dmitriev}, Nelineĭn. Din. 11, No. 4, 709--720 (2015; Zbl 1369.70009) Full Text: DOI MNR
Kholostova, Ol’ga V. The interaction of resonances of the third and fourth orders in a Hamiltonian two-degree-of-freedom system. (English) Zbl 1369.70031 Nelineĭn. Din. 11, No. 4, 671-684 (2015). MSC: 70H05 70H14 70H15 70K45 PDF BibTeX XML Cite \textit{O. V. Kholostova}, Nelineĭn. Din. 11, No. 4, 671--684 (2015; Zbl 1369.70031) Full Text: DOI MNR
Vishenkova, Ekaterina A. Stability of special motions (permanent rotations) of a heavy rigid body with a suspension point vibrating along the vertical. (Russian. English summary) Zbl 1381.70015 Nelineĭn. Din. 11, No. 3, 459-474 (2015). MSC: 70E17 70E20 70H14 PDF BibTeX XML Cite \textit{E. A. Vishenkova}, Nelineĭn. Din. 11, No. 3, 459--474 (2015; Zbl 1381.70015) Full Text: DOI MNR
Guzev, M. A.; Dmitriev, A. A. Stability of coupled oscillators. (Russian. English summary) Zbl 1338.70016 Dal’nevost. Mat. Zh. 15, No. 2, 166-191 (2015). MSC: 70E55 70H12 70H14 PDF BibTeX XML Cite \textit{M. A. Guzev} and \textit{A. A. Dmitriev}, Dal'nevost. Mat. Zh. 15, No. 2, 166--191 (2015; Zbl 1338.70016) Full Text: MNR
Ramos, X. S.; Correa-Otto, J. A.; Beaugé, C. The resonance overlap and Hill stability criteria revisited. (English) Zbl 1331.70027 Celest. Mech. Dyn. Astron. 123, No. 4, 453-479 (2015). MSC: 70F07 70M20 70H14 70K30 PDF BibTeX XML Cite \textit{X. S. Ramos} et al., Celest. Mech. Dyn. Astron. 123, No. 4, 453--479 (2015; Zbl 1331.70027) Full Text: DOI
Luo, Albert C. J.; Yu, Bo Bifurcation trees of period-1 motions to chaos in a two-degree-of-freedom, nonlinear oscillator. (English) Zbl 1330.70077 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 13, Article ID 1550179, 26 p. (2015). MSC: 70K50 34C15 34A55 70K55 70H05 70H12 70H14 PDF BibTeX XML Cite \textit{A. C. J. Luo} and \textit{B. Yu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 13, Article ID 1550179, 26 p. (2015; Zbl 1330.70077) Full Text: DOI
Kaparulin, D. S.; Lyakhovich, S. L. Energy and stability of the Pais-Uhlenbeck oscillator. (English) Zbl 1366.70024 Kielanowski, Piotr (ed.) et al., Geometric methods in physics. XXXIII workshop, Białowieża, Poland, June 29 – July 5, 2014. Cham: Birkhäuser/Springer (ISBN 978-3-319-18211-7/hbk; 978-3-319-18212-4/ebook). Trends in Mathematics, 127-134 (2015). MSC: 70H14 70H50 PDF BibTeX XML Cite \textit{D. S. Kaparulin} and \textit{S. L. Lyakhovich}, in: Geometric methods in physics. XXXIII workshop, Białowieża, Poland, June 29 -- July 5, 2014. Cham: Birkhäuser/Springer. 127--134 (2015; Zbl 1366.70024) Full Text: DOI
Muñoz-Lecanda, M.; Rodríguez-Olmos, M.; Teixidó-Román, M. A Hamiltonian study of the stability and bifurcations for the satellite problem. (English) Zbl 1378.70004 J. Nonlinear Sci. 25, No. 6, 1347-1390 (2015). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 70E15 70H14 70H33 37J20 37J25 PDF BibTeX XML Cite \textit{M. Muñoz-Lecanda} et al., J. Nonlinear Sci. 25, No. 6, 1347--1390 (2015; Zbl 1378.70004) Full Text: DOI
Kholostova, Olga V. On the stability of the specific motions of a heavy rigid body due to fast vertical vibrations of one of its points. (Russian. English summary) Zbl 1353.70010 Nelineĭn. Din. 11, No. 1, 99-116 (2015). MSC: 70E17 70E20 70H14 PDF BibTeX XML Cite \textit{O. V. Kholostova}, Nelineĭn. Din. 11, No. 1, 99--116 (2015; Zbl 1353.70010) Full Text: DOI MNR
Markeev, Anatoly P. On the Birkhoff transformation in the case of complete degeneracy of the quadratic part of the Hamiltonian. (English) Zbl 1378.70022 Regul. Chaotic Dyn. 20, No. 3, 309-316 (2015); translation in Nelineĭn. Din. 11, No. 2, 343-352 (2015). MSC: 70H14 70H15 PDF BibTeX XML Full Text: DOI
D’Annibale, Francesco; Rosi, Giuseppe; Luongo, Angelo On the failure of the ‘similar piezoelectric control’ in preventing loss of stability by nonconservative positional forces. (English) Zbl 1392.70039 Z. Angew. Math. Phys. 66, No. 4, 1949-1968 (2015). MSC: 70Q05 70H14 70H25 70J25 PDF BibTeX XML Cite \textit{F. D'Annibale} et al., Z. Angew. Math. Phys. 66, No. 4, 1949--1968 (2015; Zbl 1392.70039) Full Text: DOI
Bardin, Boris; Chekina, Evgeniya; Chekin, Alexander On the stability of a planar resonant rotation of a satellite in an elliptic orbit. (English) Zbl 1325.70032 Regul. Chaotic Dyn. 20, No. 1, 63-73 (2015). MSC: 70F15 70H14 70K20 34D20 70K30 PDF BibTeX XML Cite \textit{B. Bardin} et al., Regul. Chaotic Dyn. 20, No. 1, 63--73 (2015; Zbl 1325.70032) Full Text: DOI
Eliasson, L. H.; Fayad, B.; Krikorian, R. Around the stability of KAM tori. (English) Zbl 1366.37126 Duke Math. J. 164, No. 9, 1733-1775 (2015). Reviewer: Xiaocai Wang (Huaian) MSC: 37J40 70H08 37J25 70H12 70H14 PDF BibTeX XML Cite \textit{L. H. Eliasson} et al., Duke Math. J. 164, No. 9, 1733--1775 (2015; Zbl 1366.37126) Full Text: DOI Euclid arXiv
Páez, Rocío; Efthymiopoulos, Christos Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems. (English) Zbl 1314.70013 Celest. Mech. Dyn. Astron. 121, No. 2, 139-170 (2015). MSC: 70F15 70M20 70F10 70H14 70K55 PDF BibTeX XML Cite \textit{R. Páez} and \textit{C. Efthymiopoulos}, Celest. Mech. Dyn. Astron. 121, No. 2, 139--170 (2015; Zbl 1314.70013) Full Text: DOI
Zhou, Qinglong; Long, Yiming Equivalence of linear stabilities of elliptic triangle solutions of the planar charged and classical three-body problems. (English) Zbl 1309.70011 J. Differ. Equations 258, No. 11, 3851-3879 (2015). MSC: 70F07 70H14 37J45 PDF BibTeX XML Cite \textit{Q. Zhou} and \textit{Y. Long}, J. Differ. Equations 258, No. 11, 3851--3879 (2015; Zbl 1309.70011) Full Text: DOI arXiv