Prohaska, Roland; Sert, Cagri Markov random walks on homogeneous spaces and Diophantine approximation on fractals. (English) Zbl 07269834 Trans. Am. Math. Soc. 373, No. 11, 8163-8196 (2020). MSC: 37A50 60G50 60K50 28A80 PDF BibTeX XML Cite \textit{R. Prohaska} and \textit{C. Sert}, Trans. Am. Math. Soc. 373, No. 11, 8163--8196 (2020; Zbl 07269834) Full Text: DOI
Andres, Sebastian; Deuschel, Jean-Dominique; Slowik, Martin Green kernel asymptotics for two-dimensional random walks under random conductances. (English) Zbl 07252778 Electron. Commun. Probab. 25, Paper No. 58, 14 p. (2020). MSC: 60K50 60J35 60J45 60K37 82C41 PDF BibTeX XML Cite \textit{S. Andres} et al., Electron. Commun. Probab. 25, Paper No. 58, 14 p. (2020; Zbl 07252778) Full Text: DOI Euclid
Gwynne, Ewain; Hutchcroft, Tom Anomalous diffusion of random walk on random planar maps. (English) Zbl 07250122 Probab. Theory Relat. Fields 178, No. 1-2, 567-611 (2020). MSC: 60K50 60J67 60D05 PDF BibTeX XML Cite \textit{E. Gwynne} and \textit{T. Hutchcroft}, Probab. Theory Relat. Fields 178, No. 1--2, 567--611 (2020; Zbl 07250122) Full Text: DOI
Popov, Serguei Two-dimensional random walk. From path counting to random interlacements (to appear). (English) Zbl 07243170 Institute of Mathematical Statistics Textbooks. Cambridge: Cambridge University Press (ISBN 978-1-108-45969-3/pbk; 978-1-108-47245-6/hbk). (2020). MSC: 60-02 60G50 60K50 05C81 PDF BibTeX XML
Belomestny, D.; Iosipoi, L.; Moulines, E.; Naumov, A.; Samsonov, S. Variance reduction for Markov chains with application to MCMC. (English) Zbl 1447.62107 Stat. Comput. 30, No. 4, 973-997 (2020). MSC: 62M15 60K50 65C05 PDF BibTeX XML Cite \textit{D. Belomestny} et al., Stat. Comput. 30, No. 4, 973--997 (2020; Zbl 1447.62107) Full Text: DOI
Leonenko, N. N.; Papić, I.; Sikorskii, A.; Šuvak, N. Approximation of heavy-tailed fractional Pearson diffusions in Skorokhod topology. (English) Zbl 07217655 J. Math. Anal. Appl. 486, No. 2, Article ID 123934, 21 p. (2020). MSC: 60F17 60J60 60K50 PDF BibTeX XML Cite \textit{N. N. Leonenko} et al., J. Math. Anal. Appl. 486, No. 2, Article ID 123934, 21 p. (2020; Zbl 07217655) Full Text: DOI
Zhang, Fu; Du, Kai Krylov-Safonov estimates for a degenerate diffusion process. (English) Zbl 07210270 Stochastic Processes Appl. 130, No. 8, 5100-5123 (2020). MSC: 60J60 60K50 60H15 PDF BibTeX XML Cite \textit{F. Zhang} and \textit{K. Du}, Stochastic Processes Appl. 130, No. 8, 5100--5123 (2020; Zbl 07210270) Full Text: DOI
Deng, Weihua; Wang, Xudong; Zhang, Pingwen Anisotropic nonlocal diffusion operators for normal and anomalous dynamics. (English) Zbl 1448.60192 Multiscale Model. Simul. 18, No. 1, 415-443 (2020). MSC: 60K50 35R11 82C31 PDF BibTeX XML Cite \textit{W. Deng} et al., Multiscale Model. Simul. 18, No. 1, 415--443 (2020; Zbl 1448.60192) Full Text: DOI
Figueiredo, Daniel; Iacobelli, Giulio; Shneer, Seva The end time of SIS epidemics driven by random walks on edge-transitive graphs. (English) Zbl 1434.92031 J. Stat. Phys. 179, No. 3, 651-671 (2020). MSC: 92D30 05C80 60K50 91D30 PDF BibTeX XML Cite \textit{D. Figueiredo} et al., J. Stat. Phys. 179, No. 3, 651--671 (2020; Zbl 1434.92031) Full Text: DOI
Carnaffan, Sean Anomalous diffusion processes: stochastic models and their properties. (Abstract of thesis). (English) Zbl 1441.60092 Bull. Aust. Math. Soc. 101, No. 3, 514-517 (2020). MSC: 60K50 60G22 35Q84 62M09 PDF BibTeX XML Cite \textit{S. Carnaffan}, Bull. Aust. Math. Soc. 101, No. 3, 514--517 (2020; Zbl 1441.60092) Full Text: DOI
Abundo, M.; Ascione, G.; Carfora, M. F.; Pirozzi, E. A fractional PDE for first passage time of time-changed Brownian motion and its numerical solution. (English) Zbl 1440.60076 Appl. Numer. Math. 155, 103-118 (2020). MSC: 60J65 60H15 60K50 PDF BibTeX XML Cite \textit{M. Abundo} et al., Appl. Numer. Math. 155, 103--118 (2020; Zbl 1440.60076) Full Text: DOI
De Gregorio, Alessandro; Garra, Roberto Alternative probabilistic representations of Barenblatt-type solutions. (English) Zbl 1435.60025 Mod. Stoch., Theory Appl. 7, No. 1, 97-112 (2020). MSC: 60K50 35C06 35K59 PDF BibTeX XML Cite \textit{A. De Gregorio} and \textit{R. Garra}, Mod. Stoch., Theory Appl. 7, No. 1, 97--112 (2020; Zbl 1435.60025) Full Text: DOI
dos Santos, Maike A. F. Analytic approaches of the anomalous diffusion: a review. (English) Zbl 1448.60193 Chaos Solitons Fractals 124, 86-96 (2019). MSC: 60K50 60-02 82C31 82C41 PDF BibTeX XML Cite \textit{M. A. F. dos Santos}, Chaos Solitons Fractals 124, 86--96 (2019; Zbl 1448.60193) Full Text: DOI
Orlov, Yu. N.; Kislitsyn, A. A. Chernoff approximations for nonstationary random walk modeling. (English) Zbl 07266216 Lobachevskii J. Math. 40, No. 12, 2095-2102 (2019). Reviewer: Utkir A. Rozikov (Tashkent) MSC: 37M10 37A60 60K50 82B41 82C41 PDF BibTeX XML Cite \textit{Yu. N. Orlov} and \textit{A. A. Kislitsyn}, Lobachevskii J. Math. 40, No. 12, 2095--2102 (2019; Zbl 07266216) Full Text: DOI
Bardet, Ivan; Bringuier, Hugo; Pautrat, Yan; Pellegrini, Clément Recurrence and transience of continuous-time open quantum walks. (English) Zbl 07262321 Donati-Martin, Catherine (ed.) et al., Séminaire de probabilités L. Cham: Springer (ISBN 978-3-030-28534-0/pbk; 978-3-030-28535-7/ebook). Lecture Notes in Mathematics 2252. Séminaire de Probabilités, 493-518 (2019). MSC: 81Q35 05C81 60K50 65C40 60H15 PDF BibTeX XML Cite \textit{I. Bardet} et al., Lect. Notes Math. 2252, 493--518 (2019; Zbl 07262321) Full Text: DOI
Nikan, O.; Tenreiro Machado, J. A.; Golbabai, A.; Nikazad, T. Numerical investigation of the nonlinear modified anomalous diffusion process. (English) Zbl 1430.60091 Nonlinear Dyn. 97, No. 4, 2757-2775 (2019). MSC: 60K50 35R11 65M70 26A33 PDF BibTeX XML Cite \textit{O. Nikan} et al., Nonlinear Dyn. 97, No. 4, 2757--2775 (2019; Zbl 1430.60091) Full Text: DOI
Wiese, Kay Jörg; Fedorenko, Andrei A. Field theories for loop-erased random walks. (English) Zbl 1430.81051 Nucl. Phys., B 946, Article ID 114696, 18 p. (2019). MSC: 81T10 82B41 82C41 60K50 81T40 PDF BibTeX XML Cite \textit{K. J. Wiese} and \textit{A. A. Fedorenko}, Nucl. Phys., B 946, Article ID 114696, 18 p. (2019; Zbl 1430.81051) Full Text: DOI
Saito, Keiji; Sasada, Makiko; Suda, Hayate \(5 / 6\)-superdiffusion of energy for coupled charged harmonic oscillators in a magnetic field. (English) Zbl 1435.82022 Commun. Math. Phys. 372, No. 1, 151-182 (2019). Reviewer: Bassano Vacchini (Milano) MSC: 82C31 60K50 60G51 35Q20 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{K. Saito} et al., Commun. Math. Phys. 372, No. 1, 151--182 (2019; Zbl 1435.82022) Full Text: DOI
Angeli, Letizia; Grosskinsky, Stefan; Johansen, Adam M.; Pizzoferrato, Andrea Rare event simulation for stochastic dynamics in continuous time. (English) Zbl 1436.60085 J. Stat. Phys. 176, No. 5, 1185-1210 (2019). MSC: 60K50 60F10 82C22 60K35 65C05 PDF BibTeX XML Cite \textit{L. Angeli} et al., J. Stat. Phys. 176, No. 5, 1185--1210 (2019; Zbl 1436.60085) Full Text: DOI
Procaccia, Eviatar B.; Zhang, Yuan Stationary harmonic measure and DLA in the upper half plane. (English) Zbl 07115581 J. Stat. Phys. 176, No. 4, 946-980 (2019). MSC: 60K50 PDF BibTeX XML Cite \textit{E. B. Procaccia} and \textit{Y. Zhang}, J. Stat. Phys. 176, No. 4, 946--980 (2019; Zbl 07115581) Full Text: DOI arXiv
Hernández Herrán, Damián Anomalous diffusion: foundations and applications. (Spanish) Zbl 1439.60096 Misc. Mat. 58.1, 37-51 (2014). MSC: 60K50 82C05 PDF BibTeX XML Cite \textit{D. Hernández Herrán}, Misc. Mat. 58.1, 37--51 (2014; Zbl 1439.60096) Full Text: Link