Odzijewicz, Anatol Perturbed \((2n - 1)\)-dimensional Kepler problem and the nilpotent adjoint orbits of \(U(n, n)\). (English) Zbl 07292455 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 087, 23 p. (2020). MSC: 53D17 53D20 53D22 70H06 PDF BibTeX XML Cite \textit{A. Odzijewicz}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 087, 23 p. (2020; Zbl 07292455) Full Text: DOI
Dixon, Kael; Salamon, Simon Moment maps and Galois orbits in quantum information theory. (English) Zbl 07291631 SIAM J. Appl. Algebra Geom. 4, No. 4, 502-531 (2020). MSC: 81R05 35R03 46G10 53D20 11R20 11R37 PDF BibTeX XML Cite \textit{K. Dixon} and \textit{S. Salamon}, SIAM J. Appl. Algebra Geom. 4, No. 4, 502--531 (2020; Zbl 07291631) Full Text: DOI
Karshon, Yael; Tolman, Susan Topology of complexity one quotients. (English) Zbl 07291155 Pac. J. Math. 308, No. 2, 333-346 (2020). MSC: 53D20 PDF BibTeX XML Cite \textit{Y. Karshon} and \textit{S. Tolman}, Pac. J. Math. 308, No. 2, 333--346 (2020; Zbl 07291155) Full Text: DOI
Datar, Ved V.; Pingali, Vamsi Pritham On coupled constant scalar curvature Kähler metrics. (English) Zbl 07285778 J. Symplectic Geom. 18, No. 4, 961-994 (2020). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 32Q15 53D20 53C55 58D17 58B20 PDF BibTeX XML Cite \textit{V. V. Datar} and \textit{V. P. Pingali}, J. Symplectic Geom. 18, No. 4, 961--994 (2020; Zbl 07285778) Full Text: DOI
Chan, Kwokwai; Lau, Siu-Cheong; Leung, Naichung Conan; Tseng, Hsian-Hua Open Gromov-Witten invariants and mirror maps for semi-Fano toric manifolds. (English) Zbl 07283909 Pure Appl. Math. Q. 16, No. 3, 675-720 (2020). MSC: 14J33 53D37 14M25 32S20 53D12 53D20 53D45 PDF BibTeX XML Cite \textit{K. Chan} et al., Pure Appl. Math. Q. 16, No. 3, 675--720 (2020; Zbl 07283909) Full Text: DOI
Haller, Stefan; Vizman, Cornelia Nonlinear flag manifolds as coadjoint orbits. (English) Zbl 07276373 Ann. Global Anal. Geom. 58, No. 4, 385-413 (2020). MSC: 58D10 53C30 53D20 PDF BibTeX XML Cite \textit{S. Haller} and \textit{C. Vizman}, Ann. Global Anal. Geom. 58, No. 4, 385--413 (2020; Zbl 07276373) Full Text: DOI
Musso, Emilio; Salis, Filippo The Cauchy-Riemann strain functional for Legendrian curves in the 3-sphere. (English) Zbl 07271321 Ann. Mat. Pura Appl. (4) 199, No. 6, 2395-2434 (2020). MSC: 53D20 53A20 37K10 37K25 32V05 PDF BibTeX XML Cite \textit{E. Musso} and \textit{F. Salis}, Ann. Mat. Pura Appl. (4) 199, No. 6, 2395--2434 (2020; Zbl 07271321) Full Text: DOI
Chiang, River; Kessler, Liat Homologically trivial symplectic cyclic actions need not extend to Hamiltonian circle actions. (English) Zbl 07271214 J. Topol. Anal. 12, No. 4, 1047-1071 (2020). MSC: 53D35 53D20 57R17 57S15 PDF BibTeX XML Cite \textit{R. Chiang} and \textit{L. Kessler}, J. Topol. Anal. 12, No. 4, 1047--1071 (2020; Zbl 07271214) Full Text: DOI
Appel, A.; Gautam, S. An explicit isomorphism between quantum and classical \(\mathfrak{sl}_n \). (English) Zbl 07271115 Transform. Groups 25, No. 4, 945-980 (2020). MSC: 53D17 53D20 PDF BibTeX XML Cite \textit{A. Appel} and \textit{S. Gautam}, Transform. Groups 25, No. 4, 945--980 (2020; Zbl 07271115) Full Text: DOI
Kirwan, Frances Symplectic quotients of unstable Morse strata for normsquares of moment maps. (English) Zbl 07268915 Commun. Anal. Geom. 28, No. 4, 837-870 (2020). Reviewer: Maxime Fairon (Glasgow) MSC: 53D20 58A35 14L24 PDF BibTeX XML Cite \textit{F. Kirwan}, Commun. Anal. Geom. 28, No. 4, 837--870 (2020; Zbl 07268915) Full Text: DOI
Cortés, Vicente; David, Liana Twist, elementary deformation and K/K correspondence in generalized geometry. (English) Zbl 07268564 Int. J. Math. 31, No. 10, Article ID 2050078, 51 p. (2020). Reviewer: Andrea Galasso (Taipei) MSC: 53D18 53D20 53C55 PDF BibTeX XML Cite \textit{V. Cortés} and \textit{L. David}, Int. J. Math. 31, No. 10, Article ID 2050078, 51 p. (2020; Zbl 07268564) Full Text: DOI
Herbig, Hans-Christian; Lawler, Ethan; Seaton, Christopher Constructing symplectomorphisms between symplectic torus quotients. (English) Zbl 07261499 Beitr. Algebra Geom. 61, No. 4, 581-604 (2020). MSC: 53D20 13A50 14L30 PDF BibTeX XML Cite \textit{H.-C. Herbig} et al., Beitr. Algebra Geom. 61, No. 4, 581--604 (2020; Zbl 07261499) Full Text: DOI
Herbig, Hans-Christian; Herden, Daniel; Seaton, Christopher Hilbert series associated to symplectic quotients by \(\mathrm{SU}_2\). (English) Zbl 07261091 Int. J. Algebra Comput. 30, No. 7, 1323-1357 (2020). MSC: 53D20 13A50 14L30 05E05 PDF BibTeX XML Cite \textit{H.-C. Herbig} et al., Int. J. Algebra Comput. 30, No. 7, 1323--1357 (2020; Zbl 07261091) Full Text: DOI
Galasso, Andrea; Paoletti, Roberto Equivariant asymptotics of Szegö kernels under Hamiltonian SU(2)-actions. (English) Zbl 07261081 Asian J. Math. 24, No. 3, 501-532 (2020). MSC: 30H10 32M05 41A60 53D20 53D35 53D50 57S15 PDF BibTeX XML Cite \textit{A. Galasso} and \textit{R. Paoletti}, Asian J. Math. 24, No. 3, 501--532 (2020; Zbl 07261081) Full Text: DOI
Modin, Klas; Viviani, Milo Lie-Poisson methods for isospectral flows. (English) Zbl 07244219 Found. Comput. Math. 20, No. 4, 889-921 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 37M15 65P10 37J35 37J39 53D20 PDF BibTeX XML Cite \textit{K. Modin} and \textit{M. Viviani}, Found. Comput. Math. 20, No. 4, 889--921 (2020; Zbl 07244219) Full Text: DOI
Arutyunov, Gleb E.; Olivucci, Enrico Hyperbolic spin Ruijsenaars-Schneider model from Poisson reduction. (English. Russian original) Zbl 07236588 Proc. Steklov Inst. Math. 309, 31-45 (2020); translation from Tr. Mat. Inst. Steklova 309, 38-53 (2020). MSC: 37J35 37J39 53D17 53D20 PDF BibTeX XML Cite \textit{G. E. Arutyunov} and \textit{E. Olivucci}, Proc. Steklov Inst. Math. 309, 31--45 (2020; Zbl 07236588); translation from Tr. Mat. Inst. Steklova 309, 38--53 (2020) Full Text: DOI
Lane, Jeremy The geometric structure of symplectic contraction. (English) Zbl 1447.53071 Int. Math. Res. Not. 2020, No. 12, 3521-3539 (2020). MSC: 53D20 37J39 17B08 PDF BibTeX XML Cite \textit{J. Lane}, Int. Math. Res. Not. 2020, No. 12, 3521--3539 (2020; Zbl 1447.53071) Full Text: DOI
Viviani, Milo A minimal-variable symplectic method for isospectral flows. (English) Zbl 1448.37107 BIT 60, No. 3, 741-758 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 37M15 37J35 37J70 65P10 53D20 70H06 PDF BibTeX XML Cite \textit{M. Viviani}, BIT 60, No. 3, 741--758 (2020; Zbl 1448.37107) Full Text: DOI
Kaplan, Daniel Frobenius degenerations of preprojective algebras. (English) Zbl 07227228 J. Noncommut. Geom. 14, No. 1, 349-411 (2020). MSC: 16G20 16P10 16S38 53D20 05E15 PDF BibTeX XML Cite \textit{D. Kaplan}, J. Noncommut. Geom. 14, No. 1, 349--411 (2020; Zbl 07227228) Full Text: DOI
de la Cruz, Manuel; Gaspar Rodríguez, Néstor de Jésus; Linares Romero, Román The extended rigid body and the pendulum revisited. (English) Zbl 07224066 Nelineĭn. Din. 16, No. 1, 133-159 (2020). MSC: 70E15 70B99 37K10 53D20 PDF BibTeX XML Cite \textit{M. de la Cruz} et al., Nelineĭn. Din. 16, No. 1, 133--159 (2020; Zbl 07224066) Full Text: DOI MNR
Geurts, Bernard J.; Holm, Darryl D.; Luesink, Erwin Lyapunov exponents of two stochastic Lorenz 63 systems. (English) Zbl 07222536 J. Stat. Phys. 179, No. 5-6, 1343-1365 (2020). MSC: 70E 70S 53D 70S05 53D20 70E15 PDF BibTeX XML Cite \textit{B. J. Geurts} et al., J. Stat. Phys. 179, No. 5--6, 1343--1365 (2020; Zbl 07222536) Full Text: DOI
Crespo, Francisco; Ferrer, Sebastián Alternative reduction by stages of Keplerian systems. Positive, negative, and zero energy. (English) Zbl 07220179 SIAM J. Appl. Dyn. Syst. 19, No. 2, 1525-1539 (2020). MSC: 70F16 53D20 PDF BibTeX XML Cite \textit{F. Crespo} and \textit{S. Ferrer}, SIAM J. Appl. Dyn. Syst. 19, No. 2, 1525--1539 (2020; Zbl 07220179) Full Text: DOI
Li, Chang Scalar \(V\)-soliton equation and Kähler-Ricci flow on symplectic quotients. (English) Zbl 1443.53057 Adv. Math. 371, Article ID 107229, 22 p. (2020). MSC: 53E30 53D20 35C08 58J60 PDF BibTeX XML Cite \textit{C. Li}, Adv. Math. 371, Article ID 107229, 22 p. (2020; Zbl 1443.53057) Full Text: DOI
Zapolsky, Frol Quasi-morphisms on contactomorphism groups and Grassmannians of 2-planes. (English) Zbl 1443.53048 Geom. Dedicata 207, 287-309 (2020). MSC: 53D20 53D50 20F38 PDF BibTeX XML Cite \textit{F. Zapolsky}, Geom. Dedicata 207, 287--309 (2020; Zbl 1443.53048) Full Text: DOI
Yamakawa, Daisuke Applications of quiver varieties to moduli spaces of connections on \(\mathbb{P}^1\). (English) Zbl 1442.14041 Iohara, Kenji (ed.) et al., Two algebraic byways from differential equations: Gröbner bases and quivers. Cham: Springer. Algorithms Comput. Math. 28, 325-371 (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 14D20 53D30 16G20 53D20 PDF BibTeX XML Cite \textit{D. Yamakawa}, Algorithms Comput. Math. 28, 325--371 (2020; Zbl 1442.14041) Full Text: DOI
Pingali, Vamsi Pritham Quillen metrics and perturbed equations. (English) Zbl 1442.53017 Lett. Math. Phys. 110, No. 7, 1861-1875 (2020). MSC: 53C07 53D20 53D50 PDF BibTeX XML Cite \textit{V. P. Pingali}, Lett. Math. Phys. 110, No. 7, 1861--1875 (2020; Zbl 1442.53017) Full Text: DOI
Clarke, Patrick; Cox, David A. Moment maps, strict linear precision, and maximum likelihood degree one. (English) Zbl 07212208 Adv. Math. 370, Article ID 107233, 50 p. (2020). MSC: 14M25 53D20 62F10 65D17 PDF BibTeX XML Cite \textit{P. Clarke} and \textit{D. A. Cox}, Adv. Math. 370, Article ID 107233, 50 p. (2020; Zbl 07212208) Full Text: DOI
Podobryaev, Alekseĭ V. Symmetries in left-invariant optimal control problems. (English. Russian original) Zbl 1443.49011 Sb. Math. 211, No. 2, 275-290 (2020); translation from Mat. Sb. 211, No. 2, 125-140 (2020). Reviewer: Peibiao Zhao (Nanjing) MSC: 49J21 22E30 53C17 53D20 49K15 PDF BibTeX XML Cite \textit{A. V. Podobryaev}, Sb. Math. 211, No. 2, 275--290 (2020; Zbl 1443.49011); translation from Mat. Sb. 211, No. 2, 125--140 (2020) Full Text: DOI
Li, Long; Wang, Jian; Zheng, Kai Conic singularities metrics with prescribed scalar curvature: a priori estimates for normal crossing divisors. (English) Zbl 1444.53046 Bull. Soc. Math. Fr. 148, No. 1, 51-97 (2020). MSC: 53C55 32Q15 32Q20 35B45 53C07 58E15 53D20 14L24 PDF BibTeX XML Cite \textit{L. Li} et al., Bull. Soc. Math. Fr. 148, No. 1, 51--97 (2020; Zbl 1444.53046) Full Text: DOI
Andersen, H. A note on the Hard Lefschetz property of symplectic structures. (English) Zbl 1439.53074 Beitr. Algebra Geom. 61, No. 2, 247-266 (2020). MSC: 53D20 53D05 53C55 32Q15 PDF BibTeX XML Cite \textit{H. Andersen}, Beitr. Algebra Geom. 61, No. 2, 247--266 (2020; Zbl 1439.53074) Full Text: DOI
Asselle, Luca; Schmäschke, Felix On geodesic flows with symmetries and closed magnetic geodesics on orbifolds. (English) Zbl 1443.37045 Ergodic Theory Dyn. Syst. 40, No. 6, 1480-1509 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 37J39 37J11 37J46 37D40 53D20 53C35 58E05 PDF BibTeX XML Cite \textit{L. Asselle} and \textit{F. Schmäschke}, Ergodic Theory Dyn. Syst. 40, No. 6, 1480--1509 (2020; Zbl 1443.37045) Full Text: DOI
Mammadova, Leyli; Zambon, Marco Lie 2-algebra moment maps in multisymplectic geometry. (English) Zbl 1437.53064 Differ. Geom. Appl. 70, Article ID 101631, 21 p. (2020). MSC: 53D20 17B70 PDF BibTeX XML Cite \textit{L. Mammadova} and \textit{M. Zambon}, Differ. Geom. Appl. 70, Article ID 101631, 21 p. (2020; Zbl 1437.53064) Full Text: DOI
Cupit-Foutou, Stéphanie; Pezzini, Guido; Van Steirteghem, Bart Momentum polytopes of projective spherical varieties and related Kähler geometry. (English) Zbl 07189488 Sel. Math., New Ser. 26, No. 2, Paper No. 27, 54 p. (2020). MSC: 14M27 53D20 32Q15 PDF BibTeX XML Cite \textit{S. Cupit-Foutou} et al., Sel. Math., New Ser. 26, No. 2, Paper No. 27, 54 p. (2020; Zbl 07189488) Full Text: DOI
Fehér, L. Reduction of a bi-Hamiltonian hierarchy on \(T^\ast\text{U}(n)\) to spin Ruijsenaars-Sutherland models. (English) Zbl 1445.37042 Lett. Math. Phys. 110, No. 5, 1057-1079 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J37 37J35 37J06 53D20 53D17 PDF BibTeX XML Cite \textit{L. Fehér}, Lett. Math. Phys. 110, No. 5, 1057--1079 (2020; Zbl 1445.37042) Full Text: DOI
Hadfield, Charles Ruelle and quantum resonances for open hyperbolic manifolds. (English) Zbl 07188615 Int. Math. Res. Not. 2020, No. 5, 1445-1480 (2020). MSC: 53C20 53D20 81Q70 PDF BibTeX XML Cite \textit{C. Hadfield}, Int. Math. Res. Not. 2020, No. 5, 1445--1480 (2020; Zbl 07188615) Full Text: DOI
Bonnafé, Cédric; Shan, Peng On the cohomology of Calogero-Moser spaces. (English) Zbl 1440.37063 Int. Math. Res. Not. 2020, No. 4, 1091-1111 (2020). MSC: 37J39 37J35 53D05 53D20 PDF BibTeX XML Cite \textit{C. Bonnafé} and \textit{P. Shan}, Int. Math. Res. Not. 2020, No. 4, 1091--1111 (2020; Zbl 1440.37063) Full Text: DOI
Popescu, Liviu Symmetries and conservation laws of Hamiltonian systems. (English) Zbl 1439.37064 J. Geom. Phys. 151, Article ID 103638, 12 p. (2020). Reviewer: Mario Jorge Dias Carneiro (Belo Horizonte) MSC: 37J39 37J06 53C05 70H33 53D05 53D20 70G45 PDF BibTeX XML Cite \textit{L. Popescu}, J. Geom. Phys. 151, Article ID 103638, 12 p. (2020; Zbl 1439.37064) Full Text: DOI
Ding, Hao Coupling forms and Hamiltonian FB-groupoids. (English) Zbl 1435.53063 J. Geom. Phys. 151, Article ID 103624, 12 p. (2020). MSC: 53D20 55R99 57R18 PDF BibTeX XML Cite \textit{H. Ding}, J. Geom. Phys. 151, Article ID 103624, 12 p. (2020; Zbl 1435.53063) Full Text: DOI
Biliotti, Leonardo Convexity properties of gradient maps associated to real reductive representations. (English) Zbl 1443.22015 J. Geom. Phys. 151, Article ID 103621, 15 p. (2020). Reviewer: Jonas Deré (Leuven) MSC: 22E45 53D20 14L24 PDF BibTeX XML Cite \textit{L. Biliotti}, J. Geom. Phys. 151, Article ID 103621, 15 p. (2020; Zbl 1443.22015) Full Text: DOI
Goto, Ryushi Scalar curvature as moment map in generalized Kähler geometry. (English) Zbl 1436.53059 J. Symplectic Geom. 18, No. 1, 147-190 (2020). MSC: 53D18 53D20 32Q20 53D17 PDF BibTeX XML Cite \textit{R. Goto}, J. Symplectic Geom. 18, No. 1, 147--190 (2020; Zbl 1436.53059) Full Text: DOI
Futaki, Akito; Ono, Hajime Cahen-Gutt moment map, closed Fedosov star product and structure of the automorphism group. (English) Zbl 1436.53061 J. Symplectic Geom. 18, No. 1, 123-145 (2020). MSC: 53D20 32Q15 53D55 PDF BibTeX XML Cite \textit{A. Futaki} and \textit{H. Ono}, J. Symplectic Geom. 18, No. 1, 123--145 (2020; Zbl 1436.53061) Full Text: DOI
Aloui, Foued; Zaalani, Nadhem Reduced Riemannian Poisson manifolds and Riemannian Poisson-Lie groups. (English) Zbl 1436.53060 Differ. Geom. Appl. 68, Article ID 101582, 18 p. (2020). MSC: 53D20 53D17 70G65 53B20 PDF BibTeX XML Cite \textit{F. Aloui} and \textit{N. Zaalani}, Differ. Geom. Appl. 68, Article ID 101582, 18 p. (2020; Zbl 1436.53060) Full Text: DOI
Istrati, Nicolina LCK metrics on toric LCS manifolds. (English) Zbl 1434.53090 J. Geom. Phys. 149, Article ID 103583, 12 p. (2020). MSC: 53D20 58A14 53C55 53C25 PDF BibTeX XML Cite \textit{N. Istrati}, J. Geom. Phys. 149, Article ID 103583, 12 p. (2020; Zbl 1434.53090) Full Text: DOI
Loizides, Yiannis; Song, Yanli Norm-square localization and the quantization of Hamiltonian loop group spaces. (English) Zbl 1433.58021 J. Funct. Anal. 278, No. 9, Article ID 108445, 45 p. (2020). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 58J20 53D50 58J32 53D20 PDF BibTeX XML Cite \textit{Y. Loizides} and \textit{Y. Song}, J. Funct. Anal. 278, No. 9, Article ID 108445, 45 p. (2020; Zbl 1433.58021) Full Text: DOI
Yang, Cheng; Khesin, Boris Averaging, symplectic reduction, and central extensions. (English) Zbl 07166292 Nonlinearity 33, No. 3, 1342-1365 (2020). MSC: 70K65 53D20 34K33 PDF BibTeX XML Cite \textit{C. Yang} and \textit{B. Khesin}, Nonlinearity 33, No. 3, 1342--1365 (2020; Zbl 07166292) Full Text: DOI
Herbig, Hans-Christian; Schwarz, Gerald W.; Seaton, Christopher Symplectic quotients have symplectic singularities. (English) Zbl 07161952 Compos. Math. 156, No. 3, 613-646 (2020). MSC: 14L 53D20 13A50 20G20 57S15 13H10 PDF BibTeX XML Cite \textit{H.-C. Herbig} et al., Compos. Math. 156, No. 3, 613--646 (2020; Zbl 07161952) Full Text: DOI
Görbe, Tamás; Gyenge, Ádám Canonical spectral coordinates for the Calogero-Moser space associated with the cyclic quiver. (English) Zbl 1436.14059 J. Nonlinear Math. Phys. 27, No. 2, 243-266 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14H70 37K10 53D20 PDF BibTeX XML Cite \textit{T. Görbe} and \textit{Á. Gyenge}, J. Nonlinear Math. Phys. 27, No. 2, 243--266 (2020; Zbl 1436.14059) Full Text: DOI
Ryvkin, Leonid; Wurzbacher, Tilmann; Zambon, Marco Conserved quantities on multisymplectic manifolds. (English) Zbl 1440.37064 J. Aust. Math. Soc. 108, No. 1, 120-144 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 37J39 37J06 53D20 53D05 PDF BibTeX XML Cite \textit{L. Ryvkin} et al., J. Aust. Math. Soc. 108, No. 1, 120--144 (2020; Zbl 1440.37064) Full Text: DOI arXiv
Iohara, Kenji (ed.); Malbos, Philippe (ed.); Saito, Masa-Hiko (ed.); Takayama, Nobuki (ed.) Two algebraic byways from differential equations: Gröbner bases and quivers. (English) Zbl 1444.14002 Algorithms and Computation in Mathematics 28. Cham: Springer (ISBN 978-3-030-26453-6/hbk; 978-3-030-26454-3/ebook). xi, 371 p. (2020). MSC: 14-06 16-06 62-06 00B15 13P10 14F10 14H60 14L24 14L30 16D40 16G20 16S37 18C10 18N10 18G10 34M35 34M40 35A25 53D20 58A15 68Q42 PDF BibTeX XML Cite \textit{K. Iohara} (ed.) et al., Two algebraic byways from differential equations: Gröbner bases and quivers. Cham: Springer (2020; Zbl 1444.14002) Full Text: DOI
Bondal, Alexey; Zhdanovskiy, Ilya Symplectic geometry of unbiasedness and critical points of a potential. (English) Zbl 07276137 Hori, Kentaro (ed.) et al., Primitive forms and related subjects – Kavli IPMU 2014. Proceedings of the international conference, University of Tokyo, Tokyo, Japan, February 10–14, 2014. Tokyo: Mathematical Society of Japan (ISBN 978-4-86497-085-3/hbk). Advanced Studies in Pure Mathematics 83, 1-18 (2019). MSC: 53D12 53D20 53D37 14J33 14J45 14M25 81P45 35Q56 PDF BibTeX XML Cite \textit{A. Bondal} and \textit{I. Zhdanovskiy}, Adv. Stud. Pure Math. 83, 1--18 (2019; Zbl 07276137) Full Text: DOI Euclid
Trautwein, Samuel The hyperkähler metric on the almost-Fuchsian moduli space. (English) Zbl 1442.53019 EMS Surv. Math. Sci. 6, No. 1-2, 83-131 (2019). MSC: 53C07 53D20 53C26 14L24 PDF BibTeX XML Cite \textit{S. Trautwein}, EMS Surv. Math. Sci. 6, No. 1--2, 83--131 (2019; Zbl 1442.53019) Full Text: DOI
Buchstaber, V. M.; Terzić, S. Toric topology of the complex Grassmann manifolds. (English) Zbl 07206616 Mosc. Math. J. 19, No. 3, 397-463 (2019). MSC: 57S25 57N65 53D20 14M25 52B11 14B05 PDF BibTeX XML Cite \textit{V. M. Buchstaber} and \textit{S. Terzić}, Mosc. Math. J. 19, No. 3, 397--463 (2019; Zbl 07206616) Full Text: Link
Esen, Oğul; Jiménez, Victor M.; de León, Manuel; Sardón, Cristina Reduction of a Hamilton-Jacobi equation for nonholonomic systems. (English) Zbl 1437.37080 Regul. Chaotic Dyn. 24, No. 5, 525-559 (2019). MSC: 37J60 37J06 70H20 53D12 53D20 PDF BibTeX XML Cite \textit{O. Esen} et al., Regul. Chaotic Dyn. 24, No. 5, 525--559 (2019; Zbl 1437.37080) Full Text: DOI
Tronci, Cesare Momentum maps for mixed states in quantum and classical mechanics. (English) Zbl 1448.81070 J. Geom. Mech. 11, No. 4, 639-656 (2019). MSC: 81P16 37K06 53D20 70H05 81Q70 22E70 81S10 53D50 PDF BibTeX XML Cite \textit{C. Tronci}, J. Geom. Mech. 11, No. 4, 639--656 (2019; Zbl 1448.81070) Full Text: DOI
Montaldi, James; Shaddad, Amna Generalized point vortex dynamics on \(\mathbb{CP}^2\). (English) Zbl 1434.37038 J. Geom. Mech. 11, No. 4, 601-619 (2019). MSC: 37J39 37J06 37J35 53D20 53D05 PDF BibTeX XML Cite \textit{J. Montaldi} and \textit{A. Shaddad}, J. Geom. Mech. 11, No. 4, 601--619 (2019; Zbl 1434.37038) Full Text: DOI
Montaldi, James; Shaddad, Amna Non-abelian momentum polytopes for products of \(\mathbb{CP}^2\). (English) Zbl 1434.53091 J. Geom. Mech. 11, No. 4, 575-599 (2019). MSC: 53D20 PDF BibTeX XML Cite \textit{J. Montaldi} and \textit{A. Shaddad}, J. Geom. Mech. 11, No. 4, 575--599 (2019; Zbl 1434.53091) Full Text: DOI
Skerritt, Paul; Vizman, Cornelia Dual pairs for matrix groups. (English) Zbl 1434.53092 J. Geom. Mech. 11, No. 2, 255-275 (2019). MSC: 53D20 53D17 22E60 17B08 PDF BibTeX XML Cite \textit{P. Skerritt} and \textit{C. Vizman}, J. Geom. Mech. 11, No. 2, 255--275 (2019; Zbl 1434.53092) Full Text: DOI
Ohsawa, Tomoki Dual pairs and regularization of Kummer shapes in resonances. (English) Zbl 1439.37063 J. Geom. Mech. 11, No. 2, 225-238 (2019). Reviewer: Mircea Crâşmăreanu (Iaşi) MSC: 37J39 37J11 53D17 53D20 70K30 PDF BibTeX XML Cite \textit{T. Ohsawa}, J. Geom. Mech. 11, No. 2, 225--238 (2019; Zbl 1439.37063) Full Text: DOI
Bustillo, Jaime Middle dimensional symplectic rigidity and its effect on Hamiltonian PDEs. (English) Zbl 07173691 Comment. Math. Helv. 94, No. 4, 803-832 (2019). Reviewer: David E. Hurtubise (Altoona) MSC: 53D05 53D35 53D20 37K25 37J11 PDF BibTeX XML Cite \textit{J. Bustillo}, Comment. Math. Helv. 94, No. 4, 803--832 (2019; Zbl 07173691) Full Text: DOI
Jakimowicz, Grzegorz; Odzijewicz, Anatol; Sliżewska, Aneta Symmetries of the space of connections on a principal \(G\)-bundle and related symplectic structures. (English) Zbl 1435.53022 Rev. Math. Phys. 31, No. 10, Article ID 1950039, 18 p. (2019). Reviewer: Mircea Crâşmăreanu (Iaşi) MSC: 53C05 53D20 53D05 PDF BibTeX XML Cite \textit{G. Jakimowicz} et al., Rev. Math. Phys. 31, No. 10, Article ID 1950039, 18 p. (2019; Zbl 1435.53022) Full Text: DOI
Arathoon, Philip Singular reduction of the 2-body problem on the 3-sphere and the 4-dimensional spinning top. (English) Zbl 07163158 Regul. Chaotic Dyn. 24, No. 4, 370-391 (2019). MSC: 70F05 53D20 PDF BibTeX XML Cite \textit{P. Arathoon}, Regul. Chaotic Dyn. 24, No. 4, 370--391 (2019; Zbl 07163158) Full Text: DOI
Bruun Madsen, Thomas; Swann, Andrew Toric geometry of \(\operatorname{G}_2\)-manifolds. (English) Zbl 1431.53049 Geom. Topol. 23, No. 7, 3459-3500 (2019). MSC: 53C25 53C29 53D20 57R45 70G45 PDF BibTeX XML Cite \textit{T. Bruun Madsen} and \textit{A. Swann}, Geom. Topol. 23, No. 7, 3459--3500 (2019; Zbl 1431.53049) Full Text: DOI
Kocherlakota, Prashant; Joshi, Pankaj S. An approach to stability analyses in general relativity via symplectic geometry. (English) Zbl 1431.53085 Arab. J. Math. 8, No. 4, 315-333 (2019). MSC: 53D05 37M15 65P10 53D20 83C05 83C57 83C75 PDF BibTeX XML Cite \textit{P. Kocherlakota} and \textit{P. S. Joshi}, Arab. J. Math. 8, No. 4, 315--333 (2019; Zbl 1431.53085) Full Text: DOI
Loizides, Yiannis Quasi-polynomials and the singular \([Q,R]=0\) theorem. (English) Zbl 1430.53090 SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 090, 15 p. (2019). MSC: 53D20 53D50 PDF BibTeX XML Cite \textit{Y. Loizides}, SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 090, 15 p. (2019; Zbl 1430.53090) Full Text: DOI arXiv
Ohsawa, Tomoki Collective heavy top dynamics. (English) Zbl 1436.37067 SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 083, 17 p. (2019). Reviewer: Giovanni Rastelli (Vercelli) MSC: 37J35 53D20 70E17 70E40 37J39 37M15 39A36 PDF BibTeX XML Cite \textit{T. Ohsawa}, SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 083, 17 p. (2019; Zbl 1436.37067) Full Text: DOI arXiv
Tsanov, Valdemar V. Secant varieties and degrees of invariants. (English) Zbl 1440.13032 J. Geom. Symmetry Phys. 51, 73-85 (2019). Reviewer: Elitza Hristova (Sofia) MSC: 13A50 14L24 14M15 14N07 20G20 22E46 53D20 PDF BibTeX XML Cite \textit{V. V. Tsanov}, J. Geom. Symmetry Phys. 51, 73--85 (2019; Zbl 1440.13032) Full Text: DOI Euclid arXiv
Babich, M. V. On parametrization of the symplectic quotient of the Cartesian product of coadjoint orbits of the complex general linear group with respect to its diagonal action. (English) Zbl 1429.53094 J. Math. Sci., New York 242, No. 5, 587-594 (2019) and Zap. Nauchn. Semin. POMI 473, 7-16 (2018). MSC: 53D20 15A99 PDF BibTeX XML Cite \textit{M. V. Babich}, J. Math. Sci., New York 242, No. 5, 587--594 (2019; Zbl 1429.53094) Full Text: DOI
Skerritt, Paul The frame bundle picture of Gaussian wave packet dynamics in semiclassical mechanics. (English) Zbl 1430.53091 Lett. Math. Phys. 109, No. 12, 2723-2751 (2019). Reviewer: Mircea Crâşmăreanu (Iaşi) MSC: 53D20 70G65 81Q20 81Q70 PDF BibTeX XML Cite \textit{P. Skerritt}, Lett. Math. Phys. 109, No. 12, 2723--2751 (2019; Zbl 1430.53091) Full Text: DOI
La Fuente-Gravy, Laurent Futaki invariant for Fedosov star products. (English) Zbl 1429.53103 J. Symplectic Geom. 17, No. 5, 1317-1330 (2019). MSC: 53D55 53C55 53D20 PDF BibTeX XML Cite \textit{L. La Fuente-Gravy}, J. Symplectic Geom. 17, No. 5, 1317--1330 (2019; Zbl 1429.53103) Full Text: DOI
Lin, Yi; Sjamaar, Reyer Convexity properties of presymplectic moment maps. (English) Zbl 1429.53095 J. Symplectic Geom. 17, No. 4, 1159-1200 (2019). MSC: 53D20 PDF BibTeX XML Cite \textit{Y. Lin} and \textit{R. Sjamaar}, J. Symplectic Geom. 17, No. 4, 1159--1200 (2019; Zbl 1429.53095) Full Text: DOI arXiv
Boulanger, Laurence Toric generalized Kähler structures. (English) Zbl 1430.53082 J. Symplectic Geom. 17, No. 4, 973-1019 (2019). Reviewer: Ahmed Lesfari (El Jadida) MSC: 53D05 53C55 53D20 53C18 PDF BibTeX XML Cite \textit{L. Boulanger}, J. Symplectic Geom. 17, No. 4, 973--1019 (2019; Zbl 1430.53082) Full Text: DOI
Hochs, Peter; Song, Yanli; Yu, Shilin A geometric formula for multiplicities of \(K\)-types of tempered representations. (English) Zbl 1429.22015 Trans. Am. Math. Soc. 372, No. 12, 8553-8586 (2019). Reviewer: Andrew Bucki (Edmond) MSC: 22E46 53D50 53D20 53C27 58J20 PDF BibTeX XML Cite \textit{P. Hochs} et al., Trans. Am. Math. Soc. 372, No. 12, 8553--8586 (2019; Zbl 1429.22015) Full Text: DOI arXiv
Neeb, Karl-Hermann Kähler geometry, momentum maps and convex sets. (English) Zbl 1432.53097 Ji, Lizhen (ed.) et al., Tsinghua lectures in mathematics. Somerville, MA: International Press; Beijing: Higher Education Press. Adv. Lect. Math. (ALM) 45, 361-391 (2019). Reviewer: Quanting Zhao (Wuhan) MSC: 53C55 53D20 52A99 PDF BibTeX XML Cite \textit{K.-H. Neeb}, in: Tsinghua lectures in mathematics. Somerville, MA: International Press; Beijing: Higher Education Press. 361--391 (2019; Zbl 1432.53097)
Li, Hui Hamiltonian circle actions with fixed point set almost minimal. (English) Zbl 1427.53094 Math. Z. 293, No. 3-4, 1315-1336 (2019). MSC: 53D05 53D20 55N25 57R20 32H02 37J06 55N91 55N35 58A12 PDF BibTeX XML Cite \textit{H. Li}, Math. Z. 293, No. 3--4, 1315--1336 (2019; Zbl 1427.53094) Full Text: DOI
Dippell, Marvin; Esposito, Chiara; Waldmann, Stefan Coisotropic triples, reduction and classical limit. (English) Zbl 1427.53105 Doc. Math. 24, 1811-1853 (2019). MSC: 53D55 53D20 16D90 PDF BibTeX XML Cite \textit{M. Dippell} et al., Doc. Math. 24, 1811--1853 (2019; Zbl 1427.53105) Full Text: DOI
Blacker, Casey Quantization of polysymplectic manifolds. (English) Zbl 1437.53056 J. Geom. Phys. 145, Article ID 103480, 17 p. (2019). Reviewer: Xiaojun Chen (Chengdu) MSC: 53D05 53D50 53D20 53C27 PDF BibTeX XML Cite \textit{C. Blacker}, J. Geom. Phys. 145, Article ID 103480, 17 p. (2019; Zbl 1437.53056) Full Text: DOI
Ikeda, Noriaki Momentum sections in Hamiltonian mechanics and sigma models. (English) Zbl 1428.53089 SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 076, 16 p. (2019). Reviewer: Mircea Crâşmăreanu (Iaşi) MSC: 53D20 70H33 70S05 PDF BibTeX XML Cite \textit{N. Ikeda}, SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 076, 16 p. (2019; Zbl 1428.53089) Full Text: DOI arXiv
Meneses, Claudio Linear phase space deformations with angular momentum symmetry. (English) Zbl 1442.17021 J. Geom. Mech. 11, No. 1, 45-58 (2019). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 17B56 17B80 17B08 53D20 14H70 PDF BibTeX XML Cite \textit{C. Meneses}, J. Geom. Mech. 11, No. 1, 45--58 (2019; Zbl 1442.17021) Full Text: DOI
Grabowska, Katarzyna; Urbański, Pawel Geometry of Routh reduction. (English) Zbl 1448.70050 J. Geom. Mech. 11, No. 1, 23-44 (2019). MSC: 70H33 53D20 70H03 PDF BibTeX XML Cite \textit{K. Grabowska} and \textit{P. Urbański}, J. Geom. Mech. 11, No. 1, 23--44 (2019; Zbl 1448.70050) Full Text: DOI
Jauberteau, François; Rollin, Yann; Tapie, Samuel Discrete geometry and isotropic surfaces. (English. French summary) Zbl 1432.53110 Mém. Soc. Math. Fr., Nouv. Sér. 161, 1-99 (2019). Reviewer: Andreea Olteanu (Bucureşti) MSC: 53D12 39A14 39A70 47B39 53D50 53D20 53D30 52B70 PDF BibTeX XML Cite \textit{F. Jauberteau} et al., Mém. Soc. Math. Fr., Nouv. Sér. 161, 1--99 (2019; Zbl 1432.53110) Full Text: arXiv
Mikhalkin, Grigory Examples of tropical-to-Lagrangian correspondence. (English) Zbl 1425.53102 Eur. J. Math. 5, No. 3, 1033-1066 (2019). MSC: 53D12 53D20 14T05 PDF BibTeX XML Cite \textit{G. Mikhalkin}, Eur. J. Math. 5, No. 3, 1033--1066 (2019; Zbl 1425.53102) Full Text: DOI arXiv
Arai, Masato; Baba, Kurando Special Lagrangian submanifolds and cohomogeneity one actions on the complex projective space. (English) Zbl 1430.53084 Tokyo J. Math. 42, No. 1, 255-284 (2019). MSC: 53D12 53D20 PDF BibTeX XML Cite \textit{M. Arai} and \textit{K. Baba}, Tokyo J. Math. 42, No. 1, 255--284 (2019; Zbl 1430.53084) Full Text: Euclid arXiv
Lin, Yi Kirwan surjectivity for the equivariant Dolbeault cohomology. (English) Zbl 1423.53089 J. Geom. Phys. 144, 43-53 (2019). MSC: 53C55 53D20 32Q20 PDF BibTeX XML Cite \textit{Y. Lin}, J. Geom. Phys. 144, 43--53 (2019; Zbl 1423.53089) Full Text: DOI arXiv
Bellamy, Gwyn; Schedler, Travis On symplectic resolutions and factoriality of Hamiltonian reductions. (English) Zbl 1444.14007 Math. Ann. 375, No. 1-2, 165-176 (2019). MSC: 14B05 14E30 14L24 53D20 PDF BibTeX XML Cite \textit{G. Bellamy} and \textit{T. Schedler}, Math. Ann. 375, No. 1--2, 165--176 (2019; Zbl 1444.14007) Full Text: DOI arXiv
Gay-Balmaz, François; Vizman, Cornelia Isotropic submanifolds and coadjoint orbits of the Hamiltonian group. (English) Zbl 1425.53106 J. Symplectic Geom. 17, No. 3, 663-702 (2019). MSC: 53D20 17B08 PDF BibTeX XML Cite \textit{F. Gay-Balmaz} and \textit{C. Vizman}, J. Symplectic Geom. 17, No. 3, 663--702 (2019; Zbl 1425.53106) Full Text: DOI
Ohsawa, Tomoki Symplectic reduction and the Lie-Poisson shape dynamics of \(N\) point vortices on the plane. (English) Zbl 07102640 Nonlinearity 32, No. 10, 3820-3842 (2019). MSC: 37J15 53D20 70H05 70H06 76B47 PDF BibTeX XML Cite \textit{T. Ohsawa}, Nonlinearity 32, No. 10, 3820--3842 (2019; Zbl 07102640) Full Text: DOI
Stanciu, Miron Locally conformally symplectic reduction. (English) Zbl 1422.53070 Ann. Global Anal. Geom. 56, No. 2, 245-275 (2019). MSC: 53D20 53D05 53D10 PDF BibTeX XML Cite \textit{M. Stanciu}, Ann. Global Anal. Geom. 56, No. 2, 245--275 (2019; Zbl 1422.53070) Full Text: DOI arXiv
Khesin, Boris; Misiołek, Gerard; Modin, Klas Geometry of the Madelung transform. (English) Zbl 1425.53107 Arch. Ration. Mech. Anal. 234, No. 2, 549-573 (2019). Reviewer: Ahmed Lesfari (El Jadida) MSC: 53D20 32Q15 35Q05 35Q31 PDF BibTeX XML Cite \textit{B. Khesin} et al., Arch. Ration. Mech. Anal. 234, No. 2, 549--573 (2019; Zbl 1425.53107) Full Text: DOI
McLachlan, Robert I.; Offen, Christian; Tapley, Benjamin K. Symplectic integration of PDEs using Clebsch variables. (English) Zbl 1435.37102 J. Comput. Dyn. 6, No. 1, 111-130 (2019). Reviewer: Petr Sváček (Praha) MSC: 37M15 37K25 65P10 35Q31 53D20 65N06 PDF BibTeX XML Cite \textit{R. I. McLachlan} et al., J. Comput. Dyn. 6, No. 1, 111--130 (2019; Zbl 1435.37102) Full Text: DOI
Holm, Tara S.; Kessler, Liat Circle actions on symplectic four-manifolds. (English) Zbl 07098084 Commun. Anal. Geom. 27, No. 2, 421-464 (2019). MSC: 53D20 53D45 57R17 57S15 PDF BibTeX XML Cite \textit{T. S. Holm} and \textit{L. Kessler}, Commun. Anal. Geom. 27, No. 2, 421--464 (2019; Zbl 07098084) Full Text: DOI arXiv
Fukaya, Kenji; Oh, Yong-Geun; Ohta, Hiroshi; Ono, Kaoru Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory. (English) Zbl 07096948 Memoirs of the American Mathematical Society 1254. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3625-4/pbk; 978-1-4704-5325-1/ebook). x, 266 p. (2019). Reviewer: Matthew Stoffregen (Cambridge) MSC: 53D40 53D12 55T99 57R57 53D45 53D20 14N35 57R58 PDF BibTeX XML Cite \textit{K. Fukaya} et al., Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory. Providence, RI: American Mathematical Society (AMS) (2019; Zbl 07096948) Full Text: DOI arXiv
Krom, Robin S.; Salamon, Dietmar A. The Donaldson geometric flow for symplectic four-manifolds. (English) Zbl 07095123 J. Symplectic Geom. 17, No. 2, 381-417 (2019). MSC: 53D20 32Q25 57 PDF BibTeX XML Cite \textit{R. S. Krom} and \textit{D. A. Salamon}, J. Symplectic Geom. 17, No. 2, 381--417 (2019; Zbl 07095123) Full Text: DOI arXiv
Bazzoni, Giovanni; Goertsches, Oliver Toric actions in cosymplectic geometry. (English) Zbl 1421.53079 Forum Math. 31, No. 4, 907-915 (2019). MSC: 53D05 53D15 53D20 53D17 PDF BibTeX XML Cite \textit{G. Bazzoni} and \textit{O. Goertsches}, Forum Math. 31, No. 4, 907--915 (2019; Zbl 1421.53079) Full Text: DOI arXiv
Cho, Yunhyung Classification of six-dimensional monotone symplectic manifolds admitting semifree circle actions. I. (English) Zbl 1419.53078 Int. J. Math. 30, No. 6, Article ID 1950032, 71 p. (2019). MSC: 53D20 14J45 PDF BibTeX XML Cite \textit{Y. Cho}, Int. J. Math. 30, No. 6, Article ID 1950032, 71 p. (2019; Zbl 1419.53078) Full Text: DOI arXiv
Ryvkin, Leonid; Wurzbacher, Tilmann An invitation to multisymplectic geometry. (English) Zbl 1416.53076 J. Geom. Phys. 142, 9-36 (2019). MSC: 53D05 70S05 37C05 53D20 37K05 PDF BibTeX XML Cite \textit{L. Ryvkin} and \textit{T. Wurzbacher}, J. Geom. Phys. 142, 9--36 (2019; Zbl 1416.53076) Full Text: DOI
Dixon, Kael The multi-moment maps of the nearly Kähler \(S^3\times S^3\). (English) Zbl 1415.53066 Geom. Dedicata 200, 351-362 (2019). MSC: 53D20 53C30 53C55 53C15 PDF BibTeX XML Cite \textit{K. Dixon}, Geom. Dedicata 200, 351--362 (2019; Zbl 1415.53066) Full Text: DOI
Russo, Giovanni; Swann, Andrew Nearly Kähler six-manifolds with two-torus symmetry. (English) Zbl 1414.53023 J. Geom. Phys. 138, 144-153 (2019). MSC: 53C15 53C55 53D20 PDF BibTeX XML Cite \textit{G. Russo} and \textit{A. Swann}, J. Geom. Phys. 138, 144--153 (2019; Zbl 1414.53023) Full Text: DOI
Wang, Yicao The GIT aspect of generalized Kähler reduction. I. (English) Zbl 07058906 J. Geom. Phys. 138, 20-32 (2019). MSC: 53D18 53C55 53D20 PDF BibTeX XML Cite \textit{Y. Wang}, J. Geom. Phys. 138, 20--32 (2019; Zbl 07058906) Full Text: DOI
Lindsay, Nicholas; Panov, Dmitri \(S^1\)-invariant symplectic hypersurfaces in dimension 6 and the Fano condition. (English) Zbl 07055382 J. Topol. 12, No. 1, 221-285 (2019). MSC: 53D20 53D35 57R57 14J45 57R18 PDF BibTeX XML Cite \textit{N. Lindsay} and \textit{D. Panov}, J. Topol. 12, No. 1, 221--285 (2019; Zbl 07055382) Full Text: DOI
Fischer, Mathias Metric symplectic Lie algebras. (English) Zbl 1439.53052 J. Lie Theory 29, No. 1, 191-220 (2019). Reviewer: Patrice Sawyer (Sudbury) MSC: 53C35 53D20 17B30 PDF BibTeX XML Cite \textit{M. Fischer}, J. Lie Theory 29, No. 1, 191--220 (2019; Zbl 1439.53052) Full Text: arXiv Link