Bertucci, Charles Fokker-Planck equations of jumping particles and mean field games of impulse control. (English) Zbl 07283940 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 5, 1211-1244 (2020). MSC: 49N80 49N25 49J25 PDF BibTeX XML Cite \textit{C. Bertucci}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 5, 1211--1244 (2020; Zbl 07283940) Full Text: DOI
Bonnemain, Thibault; Gobron, Thierry; Ullmo, Denis Universal behavior in non-stationary mean field games. (English) Zbl 1448.49043 Phys. Lett., A 384, No. 25, Article ID 126608, 3 p. (2020). MSC: 49N80 37N40 91B55 PDF BibTeX XML Cite \textit{T. Bonnemain} et al., Phys. Lett., A 384, No. 25, Article ID 126608, 3 p. (2020; Zbl 1448.49043) Full Text: DOI
Kim, Jin Won; Mehta, Prashant G. An optimal control derivation of nonlinear smoothing equations. (English) Zbl 07271602 Junge, Oliver (ed.) et al., Advances in dynamics, optimization and computation. A volume dedicated to Michael Dellnitz on the occasion of his 60th birthday. Cham: Springer (ISBN 978-3-030-51263-7/hbk; 978-3-030-51264-4/ebook). Studies in Systems, Decision and Control 304, 295-311 (2020). MSC: 49K20 49N80 35Q89 91A16 60E05 60J25 PDF BibTeX XML Cite \textit{J. W. Kim} and \textit{P. G. Mehta}, Stud. Syst. Decis. Control 304, 295--311 (2020; Zbl 07271602) Full Text: DOI
Trusov, N. V. Numerical solution of mean field games problems with turnpike effect. (English) Zbl 1450.49015 Lobachevskii J. Math. 41, No. 4, 561-576 (2020). MSC: 49M41 49N80 91A16 34H05 PDF BibTeX XML Cite \textit{N. V. Trusov}, Lobachevskii J. Math. 41, No. 4, 561--576 (2020; Zbl 1450.49015) Full Text: DOI
Lin, Yaning Necessary/sufficient conditions for Pareto optimality in finite horizon mean-field type stochastic differential game. (English) Zbl 07264591 Automatica 119, Article ID 108951, 8 p. (2020). MSC: 91A16 91A12 93E20 49N10 49N80 PDF BibTeX XML Cite \textit{Y. Lin}, Automatica 119, Article ID 108951, 8 p. (2020; Zbl 07264591) Full Text: DOI
Firoozi, Dena; Jaimungal, Sebastian; Caines, Peter E. Convex analysis for LQG systems with applications to major-minor LQG mean-field game systems. (English) Zbl 07256000 Syst. Control Lett. 142, Article ID 104734, 11 p. (2020). MSC: 91A16 49N10 49N80 90C25 PDF BibTeX XML Cite \textit{D. Firoozi} et al., Syst. Control Lett. 142, Article ID 104734, 11 p. (2020; Zbl 07256000) Full Text: DOI
Wang, Bing-Chang; Zhang, Huanshui; Zhang, Ji-Feng Mean field linear-quadratic control: uniform stabilization and social optimality. (English) Zbl 1448.91028 Automatica 121, Article ID 109088, 14 p. (2020). MSC: 91A16 49N10 49N80 93A16 93D05 60H10 PDF BibTeX XML Cite \textit{B.-C. Wang} et al., Automatica 121, Article ID 109088, 14 p. (2020; Zbl 1448.91028) Full Text: DOI
Wang, Tianxiao On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems. (English) Zbl 1442.93048 ESAIM, Control Optim. Calc. Var. 26, Paper No. 41, 34 p. (2020). MSC: 93E20 49N10 49N80 PDF BibTeX XML Cite \textit{T. Wang}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 41, 34 p. (2020; Zbl 1442.93048) Full Text: DOI
Tang, Qing; Camilli, Fabio Variational time-fractional mean field games. (English) Zbl 1444.91026 Dyn. Games Appl. 10, No. 2, 573-588 (2020). MSC: 91A16 49N80 35Q84 35R11 PDF BibTeX XML Cite \textit{Q. Tang} and \textit{F. Camilli}, Dyn. Games Appl. 10, No. 2, 573--588 (2020; Zbl 1444.91026) Full Text: DOI
Lee, Myoung Hoon; Moon, Jun Partially-observed decentralized optimal control for large population two-wheeled vehicles: a differential game approach. (English) Zbl 1441.93004 J. Franklin Inst. 357, No. 9, 5248-5276 (2020). MSC: 93A14 93C85 49N70 49N80 PDF BibTeX XML Cite \textit{M. H. Lee} and \textit{J. Moon}, J. Franklin Inst. 357, No. 9, 5248--5276 (2020; Zbl 1441.93004) Full Text: DOI
Mannucci, Paola; Marchi, Claudio; Mariconda, Carlo; Tchou, Nicoletta Non-coercive first order Mean Field Games. (English) Zbl 1434.35245 J. Differ. Equations 269, No. 5, 4503-4543 (2020). MSC: 35Q89 35F50 49K20 49L25 49N80 PDF BibTeX XML Cite \textit{P. Mannucci} et al., J. Differ. Equations 269, No. 5, 4503--4543 (2020; Zbl 1434.35245) Full Text: DOI
Averboukh, Yurii Viability analysis of the first-order mean field games. (English) Zbl 1437.91048 ESAIM, Control Optim. Calc. Var. 26, Paper No. 33, 35 p. (2020). MSC: 91A16 49N80 PDF BibTeX XML Cite \textit{Y. Averboukh}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 33, 35 p. (2020; Zbl 1437.91048) Full Text: DOI
Ma, Yan; Huang, Minyi Linear quadratic mean field games with a major player: the multi-scale approach. (English) Zbl 1435.91025 Automatica 113, Article ID 108774, 11 p. (2020). MSC: 91A16 49N80 PDF BibTeX XML Cite \textit{Y. Ma} and \textit{M. Huang}, Automatica 113, Article ID 108774, 11 p. (2020; Zbl 1435.91025) Full Text: DOI
Cecchin, Alekos; Fischer, Markus Probabilistic approach to finite state mean field games. (English) Zbl 1434.60198 Appl. Math. Optim. 81, No. 2, 253-300 (2020). MSC: 60J27 49N80 91A16 60K35 91A10 93E20 PDF BibTeX XML Cite \textit{A. Cecchin} and \textit{M. Fischer}, Appl. Math. Optim. 81, No. 2, 253--300 (2020; Zbl 1434.60198) Full Text: DOI
Dweik, Samer; Mazanti, Guilherme Sharp semi-concavity in a non-autonomous control problem and \(L^p\) estimates in an optimal-exit MFG. (English) Zbl 1437.91053 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 2, Paper No. 11, 59 p. (2020). MSC: 91A16 49J15 49N80 PDF BibTeX XML Cite \textit{S. Dweik} and \textit{G. Mazanti}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 2, Paper No. 11, 59 p. (2020; Zbl 1437.91053) Full Text: DOI
Veretennikov, A. Yu. On mean-field (\(\mathrm{GI}/\mathrm{GI}/1\)) queueing model: existence and uniqueness. (English) Zbl 1434.90044 Queueing Syst. 94, No. 3-4, 243-255 (2020). MSC: 90B22 60K25 90-10 49N80 PDF BibTeX XML Cite \textit{A. Yu. Veretennikov}, Queueing Syst. 94, No. 3--4, 243--255 (2020; Zbl 1434.90044) Full Text: DOI
Porretta, Alessio; Ricciardi, Michele Mean field games under invariance conditions for the state space. (English) Zbl 1430.35111 Commun. Partial Differ. Equations 45, No. 2, 146-190 (2020). Reviewer: Dian K. Palagachev (Bari) MSC: 35K10 35Q93 49N80 PDF BibTeX XML Cite \textit{A. Porretta} and \textit{M. Ricciardi}, Commun. Partial Differ. Equations 45, No. 2, 146--190 (2020; Zbl 1430.35111) Full Text: DOI arXiv
Barker, Matt From mean field games to the best reply strategy in a stochastic framework. (English) Zbl 1437.49054 J. Dyn. Games 6, No. 4, 291-314 (2019). MSC: 49N80 35Q93 91A15 91A23 49N10 93C20 49N70 PDF BibTeX XML Cite \textit{M. Barker}, J. Dyn. Games 6, No. 4, 291--314 (2019; Zbl 1437.49054) Full Text: DOI
Camilli, Fabio; De Maio, Raul A time-fractional mean field game. (English) Zbl 1442.35502 Adv. Differ. Equ. 24, No. 9-10, 531-554 (2019). MSC: 35R11 49L20 49N80 60H05 PDF BibTeX XML Cite \textit{F. Camilli} and \textit{R. De Maio}, Adv. Differ. Equ. 24, No. 9--10, 531--554 (2019; Zbl 1442.35502) Full Text: Euclid
Cannarsa, Piermarco; Capuani, Rossana; Cardaliaguet, Pierre C\(^{1,1}\)-smoothness of constrained solutions in the calculus of variations with application to mean field games. (English) Zbl 1433.49002 Math. Eng. (Springfield) 1, No. 1, 174-203 (2019). Reviewer: George Stoica (Saint John) MSC: 49J15 49J30 49J53 49N80 35F21 49N90 PDF BibTeX XML Cite \textit{P. Cannarsa} et al., Math. Eng. (Springfield) 1, No. 1, 174--203 (2019; Zbl 1433.49002) Full Text: DOI
Averboukh, Yurii Krasovskii-Subbotin approach to mean field type differential games. (English) Zbl 1431.91025 Dyn. Games Appl. 9, No. 3, 573-593 (2019). MSC: 91A16 91A23 49N70 49N80 PDF BibTeX XML Cite \textit{Y. Averboukh}, Dyn. Games Appl. 9, No. 3, 573--593 (2019; Zbl 1431.91025) Full Text: DOI
Wang, Bing-Chang; Ni, Yuan-Hua; Zhang, Huanshui Mean-field games for multiagent systems with multiplicative noises. (English) Zbl 1432.91020 Int. J. Robust Nonlinear Control 29, No. 17, 6081-6104 (2019). MSC: 91A16 93A16 49N80 PDF BibTeX XML Cite \textit{B.-C. Wang} et al., Int. J. Robust Nonlinear Control 29, No. 17, 6081--6104 (2019; Zbl 1432.91020) Full Text: DOI
Li, Sen; Zhang, Wei; Zhao, Lin Connections between mean-field game and social welfare optimization. (English) Zbl 1429.91039 Automatica 110, Article ID 108590, 14 p. (2019). MSC: 91A16 91B15 49N80 91A14 PDF BibTeX XML Cite \textit{S. Li} et al., Automatica 110, Article ID 108590, 14 p. (2019; Zbl 1429.91039) Full Text: DOI arXiv
Chen, Xiang; Huang, Minyi Linear-quadratic mean field control: the invariant subspace method. (English) Zbl 1429.93154 Automatica 107, 582-586 (2019). MSC: 93C15 49N10 49N80 91A16 PDF BibTeX XML Cite \textit{X. Chen} and \textit{M. Huang}, Automatica 107, 582--586 (2019; Zbl 1429.93154) Full Text: DOI
Bensoussan, A.; Sung, K. C. J.; Yam, S. C. P.; Yung, S. P. Linear-quadratic mean field games. (English) Zbl 1343.91010 J. Optim. Theory Appl. 169, No. 2, 496-529 (2016). MSC: 91A16 91A23 91A13 91A15 49N10 49N80 93E20 PDF BibTeX XML Cite \textit{A. Bensoussan} et al., J. Optim. Theory Appl. 169, No. 2, 496--529 (2016; Zbl 1343.91010) Full Text: DOI
Tembine, Hamidou; Zhu, Quanyan; Başar, Tamer Risk-sensitive mean-field games. (English) Zbl 1360.49032 IEEE Trans. Autom. Control 59, No. 4, 835-850 (2014). MSC: 49N80 91A16 49L25 60H30 PDF BibTeX XML Cite \textit{H. Tembine} et al., IEEE Trans. Autom. Control 59, No. 4, 835--850 (2014; Zbl 1360.49032) Full Text: DOI arXiv
Bensoussan, Alain; Frehse, Jens; Yam, Phillip Mean field games and mean field type control theory. (English) Zbl 1287.93002 SpringerBriefs in Mathematics. New York, NY: Springer (ISBN 978-1-4614-8507-0/pbk; 978-1-4614-8508-7/ebook). x, 128 p. (2013). Reviewer: Eliane R. Rodrigues (México D. F.) MSC: 93-02 93C20 93E03 49L20 49N80 91A16 PDF BibTeX XML Cite \textit{A. Bensoussan} et al., Mean field games and mean field type control theory. New York, NY: Springer (2013; Zbl 1287.93002) Full Text: DOI