×

A Feynman integral and its recurrences and associators. (English) Zbl 1334.81045

Summary: We determine closed and compact expressions for the \(\epsilon\)-expansion of certain Gaussian hypergeometric functions expanded around half-integer values by explicitly solving for their recurrence relations. This \(\epsilon\)-expansion is identified with the normalized solution of the underlying Fuchs system of four regular singular points. We compute its regularized zeta series (giving rise to two independent associators) whose ratio gives the \(\epsilon\)-expansion at a specific value. Furthermore, we use the well known one-loop massive bubble integral as an example to demonstrate how to obtain all-order \(\epsilon\)-expansions for Feynman integrals and how to construct representations for Feynman integrals in terms of generalized hypergeometric functions. We use the method of differential equations in combination with the recently established general solution for recurrence relations with non-commutative coefficients.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81U05 \(2\)-body potential quantum scattering theory
33C70 Other hypergeometric functions and integrals in several variables
41A50 Best approximation, Chebyshev systems
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
65Q30 Numerical aspects of recurrence relations

Software:

HyperInt
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Weinzierl, S., Expansion around half integer values, binomial sums and inverse binomial sums, J. Math. Phys., 45, 2656 (2004) · Zbl 1071.33018
[2] Slater, L. J., Generalized Hypergeometric Functions (2008), Cambridge University Press · Zbl 0135.28101
[3] Oprisa, D.; Stieberger, S., Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums
[4] Smirnov, V. A., Evaluating Feynman Integrals (November 2010), Springer: Springer Berlin, Heidelberg
[5] Puhlfürst, G.; Stieberger, S., Differential equations, associators, and recurrences for amplitudes, Nucl. Phys. B, 902, 186 (2016) · Zbl 1332.81188
[6] Broadhurst, D. J., Massive three-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity, Eur. Phys. J. C, 8, 311 (1999)
[7] Kalmykov, M. Y.; Kniehl, B. A., Towards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters, Nucl. Phys. B, 809, 365 (2009) · Zbl 1192.81351
[8] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim. A, 110, 1435 (1997)
[9] Chetyrkin, K. G.; Tkachov, F. V., Integration by parts: the algorithm to calculate beta functions in 4 loops, Nucl. Phys. B, 192, 159 (1981)
[10] Henn, J. M., Lectures on differential equations for Feynman integrals, J. Phys. A, 48, 153001 (2015) · Zbl 1312.81078
[11] Henn, J. M., Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110, Article 251601 pp. (2013)
[12] Kalmykov, M. Y., Gauss hypergeometric function: reduction, epsilon-expansion for integer/half-integer parameters and Feynman diagrams, JHEP, 0604, Article 056 pp. (2006)
[13] Kalmykov, M. Y.; Ward, B. F.L.; Yost, S., All order epsilon-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters, JHEP, 0702, Article 040 pp. (2007) · Zbl 1245.33007
[14] Remiddi, E.; Vermaseren, J. A.M., Harmonic polylogarithms, Int. J. Mod. Phys. A, 15, 725 (2000) · Zbl 0951.33003
[15] Goncharov, A. B., Multiple polylogarithms and mixed Tate motives (2001)
[16] Duhr, C., Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP, 1208, Article 043 pp. (2012)
[17] Kalmykov, M. Y.; Ward, B. F.L.; Yost, S. A., On the all-order epsilon-expansion of generalized hypergeometric functions with integer values of parameter, JHEP, 0711, Article 009 pp. (2007) · Zbl 1245.33007
[18] Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C., Calculating three loop ladder and v-topologies for massive operator matrix elements by computer algebra · Zbl 1348.81034
[19] Boels, R. H., On the field theory expansion of superstring five point amplitudes, Nucl. Phys. B, 876, 215 (2013) · Zbl 1284.81226
[21] Lappo-Danilevskij, J. A., Mémoires sur la théorie des systémes des équations différentielles linéaires, vol. III, Travaux Inst. Physico-Math. Stekloff, vol. 8, 5-206 (1936), Acad. Sci. USSR: Acad. Sci. USSR Moscow-Leningrad · Zbl 0017.20905
[22] Panzer, E., Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun., 188, 148 (2014) · Zbl 1344.81024
[24] Boos, E. E.; Davydychev, A. I., A method of evaluating massive Feynman integrals, Theor. Math. Phys., 89, 1052 (1991) · Zbl 0729.58054
[25] Davydychev, A. I.; Kalmykov, M. Y., New results for the epsilon expansion of certain one, two and three loop Feynman diagrams, Nucl. Phys. B, 605, 266 (2001) · Zbl 0969.81598
[26] Smirnov, A. V., Algorithm FIRE - Feynman Integral REduction, J. High Energy Phys., 0810, Article 107 pp. (2008) · Zbl 1245.81033
[27] Anastasiou, C.; Glover, E. W.N.; Oleari, C., Scalar one loop integrals using the negative dimension approach, Nucl. Phys. B, 572, 307 (2000) · Zbl 0956.81053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.