Bernal-González, L.; Jung, A.; Müller, J. Universality vs. non-normality of families of meromorphic functions. (English) Zbl 07299116 Proc. Am. Math. Soc. 149, No. 2, 761-771 (2021). MSC: 30K99 30D45 37F10 PDF BibTeX XML Cite \textit{L. Bernal-González} et al., Proc. Am. Math. Soc. 149, No. 2, 761--771 (2021; Zbl 07299116) Full Text: DOI
Zarvalis, Konstantinos On the tangential speed of parabolic semigroups of holomorphic functions. (English) Zbl 07299113 Proc. Am. Math. Soc. 149, No. 2, 729-737 (2021). MSC: 37F44 30D05 PDF BibTeX XML Cite \textit{K. Zarvalis}, Proc. Am. Math. Soc. 149, No. 2, 729--737 (2021; Zbl 07299113) Full Text: DOI
Bowman, Joshua P. Geometry and algebra of the deltoid map. (English) Zbl 07297445 Am. Math. Mon. 128, No. 1, 25-39 (2021). MSC: 37F10 53A04 20F55 PDF BibTeX XML Cite \textit{J. P. Bowman}, Am. Math. Mon. 128, No. 1, 25--39 (2021; Zbl 07297445) Full Text: DOI
Gao, Rui Viana maps driven by Benedicks-Carleson quadratic maps. (English) Zbl 07291904 Trans. Am. Math. Soc. 374, No. 2, 1449-1495 (2021). MSC: 37D25 37C40 37E05 37F10 PDF BibTeX XML Cite \textit{R. Gao}, Trans. Am. Math. Soc. 374, No. 2, 1449--1495 (2021; Zbl 07291904) Full Text: DOI
Ramadas, Rohini Algebraic stability of meromorphic maps descended from Thurston’s pullback maps. (English) Zbl 07288865 Trans. Am. Math. Soc. 374, No. 1, 565-587 (2021). MSC: 14H10 37F10 37F05 PDF BibTeX XML Cite \textit{R. Ramadas}, Trans. Am. Math. Soc. 374, No. 1, 565--587 (2021; Zbl 07288865) Full Text: DOI
Pakovich, Fedor Commuting rational functions revisited. (English) Zbl 07282579 Ergodic Theory Dyn. Syst. 41, No. 1, 295-320 (2021). MSC: 30D05 37F10 PDF BibTeX XML Cite \textit{F. Pakovich}, Ergodic Theory Dyn. Syst. 41, No. 1, 295--320 (2021; Zbl 07282579) Full Text: DOI
Qiao, Jianyong; Qu, Hongyu; Zhang, Guangyuan The numbers of periodic orbits hidden at fixed points of holomorphic maps. (English) Zbl 07277636 Ergodic Theory Dyn. Syst. 41, No. 2, 578-592 (2021). MSC: 32H50 37C25 37F46 37F50 PDF BibTeX XML Cite \textit{J. Qiao} et al., Ergodic Theory Dyn. Syst. 41, No. 2, 578--592 (2021; Zbl 07277636) Full Text: DOI
Benini, Anna Miriam; Fornæss, John Erik; Peters, Han Entropy of transcendental entire functions. (English) Zbl 07277626 Ergodic Theory Dyn. Syst. 41, No. 2, 338-348 (2021). MSC: 37F10 30D20 30D35 37B40 PDF BibTeX XML Cite \textit{A. M. Benini} et al., Ergodic Theory Dyn. Syst. 41, No. 2, 338--348 (2021; Zbl 07277626) Full Text: DOI
Larsen, Michael Multiplicative series, modular forms, and Mandelbrot polynomials. (English) Zbl 07268662 Math. Comput. 90, No. 327, 345-377 (2021). MSC: 11F25 37F46 30C85 11F27 PDF BibTeX XML Cite \textit{M. Larsen}, Math. Comput. 90, No. 327, 345--377 (2021; Zbl 07268662) Full Text: DOI
Lowe, Thomas Exploring scale symmetry (to appear). (English) Zbl 06998206 Fractals and Dynamics in Mathematics, Science, and the Arts: Theory and Applications. Hackensack, NJ: World Scientific (ISBN 978-981-3278-54-7/hbk). 200 p. (2021). MSC: 28-02 28A80 37Fxx PDF BibTeX XML Cite \textit{T. Lowe}, Exploring scale symmetry (to appear). Hackensack, NJ: World Scientific (2021; Zbl 06998206) Full Text: DOI
Chen, YangQuan (ed.) Fractional calculus for complex systems (to appear). (English) Zbl 06960385 Encyclopedia of Complexity and Systems Science Series. Berlin: Springer (ISBN 978-1-4939-7376-7/hbk). 400 p. (2021). MSC: 26-06 26A33 37Fxx 00B15 PDF BibTeX XML Cite \textit{Y. Chen} (ed.), Fractional calculus for complex systems (to appear). Berlin: Springer (2021; Zbl 06960385)
Wang, Yulei; Li, Caijuan; Yang, Qi; Tian, Honggen ON the radial distribution of Julia sets of entire solutions of linear differential equations. (Chinese. English summary) Zbl 07296012 Math. Pract. Theory 50, No. 10, 282-290 (2020). MSC: 37F50 34M05 34M03 PDF BibTeX XML Cite \textit{Y. Wang} et al., Math. Pract. Theory 50, No. 10, 282--290 (2020; Zbl 07296012)
Sharma, Debasis; Parhi, Sanjaya Kumar Complex dynamics of a sixth and seventh order family of root finding methods. (English) Zbl 07293756 S\(\vec{\text{e}}\)MA J. 77, No. 3, 339-349 (2020). MSC: 37F10 65D99 65H05 65P99 65Y20 PDF BibTeX XML Cite \textit{D. Sharma} and \textit{S. K. Parhi}, S\(\vec{\text{e}}\)MA J. 77, No. 3, 339--349 (2020; Zbl 07293756) Full Text: DOI
Benini, Anna Miriam; Fagella, Núria Singular values and non-repelling cycles for entire transcendental maps. (English) Zbl 07293619 Indiana Univ. Math. J. 69, No. 5, 1543-1558 (2020). MSC: 30D05 37F10 30D30 PDF BibTeX XML Cite \textit{A. M. Benini} and \textit{N. Fagella}, Indiana Univ. Math. J. 69, No. 5, 1543--1558 (2020; Zbl 07293619) Full Text: DOI
Baake, Michael; Grimm, Uwe Fourier transform of Rauzy fractals and point spectrum of 1D Pisot inflation tilings. (English) Zbl 07292560 Doc. Math. 25, 2303-2337 (2020). MSC: 11K70 42B10 52C23 37B10 37F25 28A80 PDF BibTeX XML Cite \textit{M. Baake} and \textit{U. Grimm}, Doc. Math. 25, 2303--2337 (2020; Zbl 07292560) Full Text: DOI
Asuke, Taro On Fatou and Julia sets of foliations. (English) Zbl 07290144 J. Math. Soc. Japan 72, No. 4, 1145-1159 (2020). MSC: 37F75 57R30 32S65 PDF BibTeX XML Cite \textit{T. Asuke}, J. Math. Soc. Japan 72, No. 4, 1145--1159 (2020; Zbl 07290144) Full Text: DOI Euclid
Falk, Kurt; Matsuzaki, Katsuhiko On horospheric limit sets of Kleinian groups. (English) Zbl 07290137 J. Fractal Geom. 7, No. 4, 329-350 (2020). MSC: 30F40 37F35 PDF BibTeX XML Cite \textit{K. Falk} and \textit{K. Matsuzaki}, J. Fractal Geom. 7, No. 4, 329--350 (2020; Zbl 07290137) Full Text: DOI
Tomar, Garima; Mishra, Vishnu Narayan Maximum term of transcendental entire function and spider’s web. (English) Zbl 07289625 Math. Slovaca 70, No. 1, 81-86 (2020). MSC: 30D05 37F10 PDF BibTeX XML Cite \textit{G. Tomar} and \textit{V. N. Mishra}, Math. Slovaca 70, No. 1, 81--86 (2020; Zbl 07289625) Full Text: DOI
Naud, Frédéric Hyperbolic dynamics meet Fourier analysis, an Invitation to the book. Book review of: V. Baladi, Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach. (English) Zbl 07286455 Jahresber. Dtsch. Math.-Ver. 122, No. 4, 263-268 (2020). MSC: 00A17 37-02 37C30 37D20 37D35 37F15 37A45 46E35 PDF BibTeX XML Cite \textit{F. Naud}, Jahresber. Dtsch. Math.-Ver. 122, No. 4, 263--268 (2020; Zbl 07286455) Full Text: DOI
Benini, Anna Miriam; Rempe, Lasse A landing theorem for entire functions with bounded post-singular sets. (English) Zbl 07286397 Geom. Funct. Anal. 30, No. 6, 1465-1530 (2020). MSC: 37F20 30D05 37F10 37F12 37F45 37F10 PDF BibTeX XML Cite \textit{A. M. Benini} and \textit{L. Rempe}, Geom. Funct. Anal. 30, No. 6, 1465--1530 (2020; Zbl 07286397) Full Text: DOI
Cantat, Serge Endomorphisms and bijections of the character variety \(\chi (\protect \mathbf{F}_2,\protect \mathsf{SL}_2(\protect \mathbf{C}))\). (English. French summary) Zbl 07283622 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 4, 897-906 (2020). MSC: 37F 37C 30F 57M 34M PDF BibTeX XML Cite \textit{S. Cantat}, Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 4, 897--906 (2020; Zbl 07283622) Full Text: DOI
Kamiya, Yuichi On hybrid fractal curves of the Heighway and Lévy dragon curves. (English) Zbl 07283185 Mishou, Hidehiko (ed.) et al., Various aspects of multiple zeta functions – in honor of Professor Kohji Matsumoto’s 60th birthday. Proceedings of the international conference, Nagoya University, Nagoya, Japan August 21–25, 2020. Tokyo: Mathematical Society of Japan (ISBN 978-4-86497-088-4/hbk). Advanced Studies in Pure Mathematics 84, 161-180 (2020). MSC: 28A80 37F05 PDF BibTeX XML Cite \textit{Y. Kamiya}, Adv. Stud. Pure Math. 84, 161--180 (2020; Zbl 07283185) Full Text: DOI Euclid
Hawkins, Jane Ergodic dynamics. From basic theory to applications (to appear). (English) Zbl 07281930 Graduate Texts in Mathematics 289. Cham: Springer (ISBN 978-3-030-59241-7/hbk; 978-3-030-59242-4/ebook). viii, 328 p. (2020). MSC: 37-01 37Axx 37Fxx PDF BibTeX XML Cite \textit{J. Hawkins}, Ergodic dynamics. From basic theory to applications (to appear). Cham: Springer (2020; Zbl 07281930) Full Text: DOI
García-Garrido, Víctor J. Unveiling the fractal structure of Julia sets with Lagrangian descriptors. (English) Zbl 07281794 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105417, 12 p. (2020). MSC: 30D 26C 37F 30 PDF BibTeX XML Cite \textit{V. J. García-Garrido}, Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105417, 12 p. (2020; Zbl 07281794) Full Text: DOI
Lapidus, Michel L.; Radunović, Goran; Žubrinić, Darko Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces. (English) Zbl 07279923 Ruiz, Patricia Alonso (ed.) et al., Analysis, probability and mathematical physics on fractals. Based on the presentations at the 6th conference, Cornell University, Ithaca, NY, USA, June 2017. Hackensack, NJ: World Scientific (ISBN 978-981-12-1552-0/hbk; 978-981-12-1554-4/ebook). Fractals and Dynamics in Mathematics, Science, and the Arts: Theory and Applications 5, 21-98 (2020). Reviewer: Nasir N. Ganikhodjaev (Tashkent) MSC: 28A80 37F10 60B10 PDF BibTeX XML Cite \textit{M. L. Lapidus} et al., Fractals Dyn. Math. Sci. Arts, Theory Appl. 5, 21--98 (2020; Zbl 07279923) Full Text: DOI
Jaksztas, Ludwik On the directional derivative of the Hausdorff dimension of quadratic polynomial Julia sets at 1/4. (English) Zbl 07278297 Nonlinearity 33, No. 11, 5919-5960 (2020). MSC: 37F10 37F46 37F35 PDF BibTeX XML Cite \textit{L. Jaksztas}, Nonlinearity 33, No. 11, 5919--5960 (2020; Zbl 07278297) Full Text: DOI
Zafar, Fiza; Cordero, Alicia; Torregrosa, Juan R. A family of optimal fourth-order methods for multiple roots of nonlinear equations. (English) Zbl 07276488 Math. Methods Appl. Sci. 43, No. 14, 7869-7884 (2020). MSC: 65H05 37F10 37N30 PDF BibTeX XML Cite \textit{F. Zafar} et al., Math. Methods Appl. Sci. 43, No. 14, 7869--7884 (2020; Zbl 07276488) Full Text: DOI
Shemyakov, Sergey; Chernov, Roman; Rumiantsau, Dzmitry; Schleicher, Dierk; Schmitt, Simon; Shemyakov, Anton Finding polynomial roots by dynamical systems – a case study. (English) Zbl 07273504 Discrete Contin. Dyn. Syst. 40, No. 12, 6945-6965 (2020). Reviewer: Anton Iliev (Plovdiv) MSC: 37N30 37F10 65H04 PDF BibTeX XML Cite \textit{S. Shemyakov} et al., Discrete Contin. Dyn. Syst. 40, No. 12, 6945--6965 (2020; Zbl 07273504) Full Text: DOI
Dupont, Christophe; Rogue, Axel On the regularity of the Green current for semi-extremal endomorphisms of \(\mathbb{P}^2\). (English) Zbl 07273495 Discrete Contin. Dyn. Syst. 40, No. 12, 6767-6781 (2020). MSC: 37F80 37F10 32U40 28A15 PDF BibTeX XML Cite \textit{C. Dupont} and \textit{A. Rogue}, Discrete Contin. Dyn. Syst. 40, No. 12, 6767--6781 (2020; Zbl 07273495) Full Text: DOI
Berteloot, François; Dinh, Tien-Cuong The Mandelbrot set is the shadow of a Julia set. (English) Zbl 07273489 Discrete Contin. Dyn. Syst. 40, No. 12, 6611-6633 (2020). MSC: 37F46 37F10 32H50 PDF BibTeX XML Cite \textit{F. Berteloot} and \textit{T.-C. Dinh}, Discrete Contin. Dyn. Syst. 40, No. 12, 6611--6633 (2020; Zbl 07273489) Full Text: DOI
Dias, Kealey A characterization of multiplicity-preserving global bifurcations of complex polynomial vector fields. (English) Zbl 07273483 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 90, 31 p. (2020). MSC: 37F46 37C29 37F75 32M25 34C23 PDF BibTeX XML Cite \textit{K. Dias}, Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 90, 31 p. (2020; Zbl 07273483) Full Text: DOI
Chen, Jinchao; Li, Yezhou; Wu, Chengfa Radial distribution of Julia sets of entire solutions to complex difference equations. (English) Zbl 07273299 Mediterr. J. Math. 17, No. 6, Paper No. 184, 11 p. (2020). MSC: 30D35 34M10 37F10 PDF BibTeX XML Cite \textit{J. Chen} et al., Mediterr. J. Math. 17, No. 6, Paper No. 184, 11 p. (2020; Zbl 07273299) Full Text: DOI
Argyros, Ioannis K.; George, Santhosh High convergence order solvers in Banach space. (English) Zbl 07270291 J. Nonlinear Anal. Optim. 11, No. 2, 111-118 (2020). MSC: 65F08 37F50 65N12 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, J. Nonlinear Anal. Optim. 11, No. 2, 111--118 (2020; Zbl 07270291) Full Text: Link
Rafi, Kasra; Selinger, Nikita; Yampolsky, Michael Centralizers in mapping class groups and decidability of Thurston equivalence. (English) Zbl 07270228 Arnold Math. J. 6, No. 2, 271-290 (2020). MSC: 22 37F 30C PDF BibTeX XML Cite \textit{K. Rafi} et al., Arnold Math. J. 6, No. 2, 271--290 (2020; Zbl 07270228) Full Text: DOI
Mayer, Volker; Urbański, Mariusz Thermodynamic formalism and integral means spectrum of logarithmic tracts for transcendental entire functions. (English) Zbl 07269820 Trans. Am. Math. Soc. 373, No. 11, 7669-7711 (2020). Reviewer: Olga M. Katkova (Boston) MSC: 30D05 37D35 37F10 37F44 28A80 PDF BibTeX XML Cite \textit{V. Mayer} and \textit{M. Urbański}, Trans. Am. Math. Soc. 373, No. 11, 7669--7711 (2020; Zbl 07269820) Full Text: DOI
McMullen, Curtis T. Teichmüller dynamics and unique ergodicity via currents and Hodge theory. (English) Zbl 07268729 J. Reine Angew. Math. 768, 39-54 (2020). MSC: 37F34 37F75 37C83 37A25 32G15 53C22 32M25 PDF BibTeX XML Cite \textit{C. T. McMullen}, J. Reine Angew. Math. 768, 39--54 (2020; Zbl 07268729) Full Text: DOI
Martens, Marco; Palmisano, Liviana; Tao, Zhuang Newhouse laminations of polynomials on \(\mathbb{C}^2\). (English) Zbl 07268576 Int. J. Math. 31, No. 11, Article ID 2050091, 15 p. (2020). MSC: 32A10 32H50 37C25 37D45 37F45 PDF BibTeX XML Cite \textit{M. Martens} et al., Int. J. Math. 31, No. 11, Article ID 2050091, 15 p. (2020; Zbl 07268576) Full Text: DOI
Scárdua, Bruno Analytic deformations of pencils and integrable one-forms having a first integral. (English) Zbl 07268574 Int. J. Math. 31, No. 11, Article ID 2050089, 28 p. (2020). Reviewer: Jasmin Raissy (Toulouse) MSC: 37F75 37F80 57R30 32M25 32S65 PDF BibTeX XML Cite \textit{B. Scárdua}, Int. J. Math. 31, No. 11, Article ID 2050089, 28 p. (2020; Zbl 07268574) Full Text: DOI
Zotos, Euaggelos E.; Jung, Christof; Papadakis, K. E. Families of periodic orbits in a double-barred galaxy model. (English) Zbl 07265358 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105283, 19 p. (2020). MSC: 85A05 70F15 37N05 37F46 PDF BibTeX XML Cite \textit{E. E. Zotos} et al., Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105283, 19 p. (2020; Zbl 07265358) Full Text: DOI
Campos, B.; Canela, J.; Vindel, P. Connectivity of the Julia set for the Chebyshev-Halley family on degree \(n\) polynomials. (English) Zbl 07265062 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105026, 19 p. (2020). MSC: 37F10 65H04 PDF BibTeX XML Cite \textit{B. Campos} et al., Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105026, 19 p. (2020; Zbl 07265062) Full Text: DOI
Thurston, William P.; Baik, Hyungryul; Yan, Gao; Hubbard, John H.; Lindsey, Kathryn A.; Lei, Tan; Thurston, Dylan P. Degree-\(d\)-invariant laminations. (English) Zbl 07264009 Thurston, Dylan P. (ed.), What’s next? The mathematical legacy of William P. Thurston. Princeton, NJ: Princeton University Press (ISBN 978-0-691-16776-3/hbk; 978-0-691-16777-0/pbk; 978-0-691-18589-7/ebook). Annals of Mathematics Studies 205, 259-325 (2020). Reviewer: Bruno Zimmermann (Trieste) MSC: 37F20 37F10 37F50 PDF BibTeX XML Cite \textit{W. P. Thurston} et al., Ann. Math. Stud. 205, 259--325 (2020; Zbl 07264009)
George, Sandip V.; Misra, R.; Ambika, G. Fractal measures and nonlinear dynamics of overcontact binaries. (English) Zbl 07262809 Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104988, 15 p. (2020). MSC: 85A05 37N20 37F35 62M10 85A15 85A30 PDF BibTeX XML Cite \textit{S. V. George} et al., Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104988, 15 p. (2020; Zbl 07262809) Full Text: DOI
Jaquette, Jonathan; Schweinhart, Benjamin Fractal dimension estimation with persistent homology: a comparative study. (English) Zbl 07261588 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105163, 19 p. (2020). MSC: 62R40 28A80 37F35 PDF BibTeX XML Cite \textit{J. Jaquette} and \textit{B. Schweinhart}, Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105163, 19 p. (2020; Zbl 07261588) Full Text: DOI
Klimeš, Martin; Rousseau, Christiane On the universal unfolding of vector fields in one variable: a proof of Kostov’s theorem. (English) Zbl 07259347 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 80, 13 p. (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 37F75 32M25 32S65 58A10 PDF BibTeX XML Cite \textit{M. Klimeš} and \textit{C. Rousseau}, Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 80, 13 p. (2020; Zbl 07259347) Full Text: DOI
Ransford, Thomas; Younsi, Malik; Ai, Wen-hui Continuity of capacity of a holomorphic motion. (English) Zbl 07258208 Adv. Math. 374, Article ID 107376, 15 p. (2020). Reviewer: Dmitri V. Prokhorov (Saratov) MSC: 30C85 30C62 31A15 37F44 PDF BibTeX XML Cite \textit{T. Ransford} et al., Adv. Math. 374, Article ID 107376, 15 p. (2020; Zbl 07258208) Full Text: DOI
Zeng, Jinsong Criterion for rays landing together. (English) Zbl 07254294 Trans. Am. Math. Soc. 373, No. 9, 6479-6502 (2020). Reviewer: Mohammad Sajid (Buraidah) MSC: 37F10 37F20 PDF BibTeX XML Cite \textit{J. Zeng}, Trans. Am. Math. Soc. 373, No. 9, 6479--6502 (2020; Zbl 07254294) Full Text: DOI
Wang, Youming; Yang, Fei Julia sets as buried Julia components. (English) Zbl 07254281 Trans. Am. Math. Soc. 373, No. 10, 7287-7326 (2020). MSC: 37F10 37F20 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{F. Yang}, Trans. Am. Math. Soc. 373, No. 10, 7287--7326 (2020; Zbl 07254281) Full Text: DOI
Pereira, Jorge Vitório; Spicer, Calum Hypersurfaces quasi-invariant by codimension one foliations. (English) Zbl 07250839 Math. Ann. 378, No. 1-2, 613-635 (2020). MSC: 37F75 14E30 PDF BibTeX XML Cite \textit{J. V. Pereira} and \textit{C. Spicer}, Math. Ann. 378, No. 1--2, 613--635 (2020; Zbl 07250839) Full Text: DOI
Inou, Hiroyuki; Mukherjee, Sabyasachi On the support of the bifurcation measure of cubic polynomials. (English) Zbl 07250820 Math. Ann. 378, No. 1-2, 1-12 (2020). Reviewer: Klaus Schiefermayr (Wels) MSC: 37F10 37F40 30C10 PDF BibTeX XML Cite \textit{H. Inou} and \textit{S. Mukherjee}, Math. Ann. 378, No. 1--2, 1--12 (2020; Zbl 07250820) Full Text: DOI
Ataei Delshad, Parandoosh; Lotfi, Taher On the local convergence of Kung-Traub’s two-point method and its dynamics. (English) Zbl 07250668 Appl. Math., Praha 65, No. 4, 379-406 (2020). MSC: 65F10 65H04 37P40 37Fxx PDF BibTeX XML Cite \textit{P. Ataei Delshad} and \textit{T. Lotfi}, Appl. Math., Praha 65, No. 4, 379--406 (2020; Zbl 07250668) Full Text: DOI
Wang, Da; Zhao, Yang; Zhang, Yi; Liu, Xiyu A short note on the boundedness analysis and control of the spatial fractal set from a kind of chain coupling logistic type map. (English) Zbl 1441.28013 Fractals 28, No. 4, Article ID 2050060, 7 p. (2020). MSC: 28A80 37F10 PDF BibTeX XML Cite \textit{D. Wang} et al., Fractals 28, No. 4, Article ID 2050060, 7 p. (2020; Zbl 1441.28013) Full Text: DOI
Corrêa, Maurício; da Silva Machado, Diogo GSV-index for holomorphic Pfaff systems. (English) Zbl 1447.58001 Doc. Math. 25, 1011-1027 (2020). MSC: 58A17 32S65 32M25 37F75 37B30 PDF BibTeX XML Cite \textit{M. Corrêa} and \textit{D. da Silva Machado}, Doc. Math. 25, 1011--1027 (2020; Zbl 1447.58001) Full Text: DOI
Gwynne, Ewain Random surfaces and Liouville quantum gravity. (English) Zbl 1448.83009 Notices Am. Math. Soc. 67, No. 4, 484-491 (2020). MSC: 83C45 83C80 81T40 62P35 60D05 60G60 37F35 PDF BibTeX XML Cite \textit{E. Gwynne}, Notices Am. Math. Soc. 67, No. 4, 484--491 (2020; Zbl 1448.83009) Full Text: DOI
Sekovanov, V. S. Smooth Julia sets. (English. Russian original) Zbl 1450.28008 J. Math. Sci., New York 245, No. 2, 202-216 (2020); translation from Fundam. Prikl. Mat. 21, No. 4, 133-150 (2016). MSC: 28A80 37F10 PDF BibTeX XML Cite \textit{V. S. Sekovanov}, J. Math. Sci., New York 245, No. 2, 202--216 (2020; Zbl 1450.28008); translation from Fundam. Prikl. Mat. 21, No. 4, 133--150 (2016) Full Text: DOI
De Leo, Roberto Dynamics of Newton maps of quadratic polynomial maps of \(\mathbb{R}^2\) into itself. (English) Zbl 07247474 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030027, 21 p. (2020). MSC: 37M21 37E30 37F10 PDF BibTeX XML Cite \textit{R. De Leo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030027, 21 p. (2020; Zbl 07247474) Full Text: DOI
Nie, Hongming; Pilgrim, Kevin M. Boundedness of hyperbolic components of Newton maps. (English) Zbl 07247274 Isr. J. Math. 238, No. 2, 837-869 (2020). MSC: 37F15 37F10 37F12 37F34 PDF BibTeX XML Cite \textit{H. Nie} and \textit{K. M. Pilgrim}, Isr. J. Math. 238, No. 2, 837--869 (2020; Zbl 07247274) Full Text: DOI
Zhang, Yuhan; Gao, Junyang; Qiao, Jianyong; Wang, Qinghua Dynamics of a family of rational maps concerning renormalization transformation. (English) Zbl 07247154 Front. Math. China 15, No. 4, 807-833 (2020). MSC: 37F25 37F10 28A78 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Front. Math. China 15, No. 4, 807--833 (2020; Zbl 07247154) Full Text: DOI
Contreras, Manuel D.; Díaz-Madrigal, Santiago; Gumenyuk, Pavel Infinitesimal generators of semigroups with prescribed boundary fixed points. (English) Zbl 1450.37069 Anal. Math. Phys. 10, No. 3, Paper No. 36, 38 p. (2020). MSC: 37L05 37F44 37F80 37C25 PDF BibTeX XML Cite \textit{M. D. Contreras} et al., Anal. Math. Phys. 10, No. 3, Paper No. 36, 38 p. (2020; Zbl 1450.37069) Full Text: DOI
Adams, Henry; Aminian, Manuchehr; Farnell, Elin; Kirby, Michael; Mirth, Joshua; Neville, Rachel; Peterson, Chris; Shonkwiler, Clayton A fractal dimension for measures via persistent homology. (English) Zbl 1448.62211 Baas, Nils (ed.) et al., Topological data analysis. Proceedings of the Abel symposium 2018, Geiranger, Norway, June 4–8, 2018. Cham: Springer. Abel Symp. 15, 1-31 (2020). MSC: 62R40 62R20 55N31 60B05 37F35 60F15 PDF BibTeX XML Cite \textit{H. Adams} et al., Abel Symp. 15, 1--31 (2020; Zbl 1448.62211) Full Text: DOI
Hong, Jie; Lu, Jun; Tan, Sheng-Li On the slope of non-algebraic holomorphic foliations. (English) Zbl 1447.32045 Proc. Am. Math. Soc. 148, No. 11, 4817-4830 (2020). MSC: 32S65 14E20 14D06 37F75 PDF BibTeX XML Cite \textit{J. Hong} et al., Proc. Am. Math. Soc. 148, No. 11, 4817--4830 (2020; Zbl 1447.32045) Full Text: DOI
Waterman, James Identifying logarithmic tracts. (English) Zbl 07241189 Ann. Acad. Sci. Fenn., Math. 45, No. 2, 739-749 (2020). Reviewer: Konstantin Malyutin (Kursk) MSC: 30D05 37F10 30D35 PDF BibTeX XML Cite \textit{J. Waterman}, Ann. Acad. Sci. Fenn., Math. 45, No. 2, 739--749 (2020; Zbl 07241189) Full Text: DOI
Thurston, Dylan A positive characterization of rational maps. (English) Zbl 1450.37042 Ann. Math. (2) 192, No. 1, 1-46 (2020). Reviewer: Bruno Zimmermann (Trieste) MSC: 37F10 37F20 37F31 37E25 57M10 57R65 PDF BibTeX XML Cite \textit{D. Thurston}, Ann. Math. (2) 192, No. 1, 1--46 (2020; Zbl 1450.37042) Full Text: DOI
Huang, Xiaojie; Qiu, Weiyuan The dimension paradox in parameter space of cosine family. (English) Zbl 1450.37046 Chin. Ann. Math., Ser. B 41, No. 4, 645-656 (2020). MSC: 37F35 37F10 37C45 28A78 PDF BibTeX XML Cite \textit{X. Huang} and \textit{W. Qiu}, Chin. Ann. Math., Ser. B 41, No. 4, 645--656 (2020; Zbl 1450.37046) Full Text: DOI
Corrêa, Maurício Rational Morita equivalence for holomorphic Poisson modules. (English) Zbl 1450.17007 Adv. Math. 372, Article ID 107297, 22 p. (2020). Reviewer: Edoardo Ballico (Povo) MSC: 17B63 53D17 70G45 37F75 PDF BibTeX XML Cite \textit{M. Corrêa}, Adv. Math. 372, Article ID 107297, 22 p. (2020; Zbl 1450.17007) Full Text: DOI
Iglesias, J.; Portela, A.; Rovella, A.; Xavier, J. Sphere branched coverings and the growth rate inequality. (English) Zbl 07228301 Nonlinearity 33, No. 9, 4613-4626 (2020). MSC: 37E30 37E10 37F10 37C25 57K20 57M10 PDF BibTeX XML Cite \textit{J. Iglesias} et al., Nonlinearity 33, No. 9, 4613--4626 (2020; Zbl 07228301) Full Text: DOI
Prajapati, Manoj B.; Shah, Riddhi Expansive actions of automorphisms of locally compact groups \(G\) on \(\text{Sub}_G\). (English) Zbl 07228140 Monatsh. Math. 193, No. 1, 129-142 (2020). MSC: 37B05 37F15 22E35 54H20 PDF BibTeX XML Cite \textit{M. B. Prajapati} and \textit{R. Shah}, Monatsh. Math. 193, No. 1, 129--142 (2020; Zbl 07228140) Full Text: DOI
Jiang, Yunping Winding numbers and full extendibility in holomorphic motions. (English) Zbl 1447.32020 Conform. Geom. Dyn. 24, 109-117 (2020). Reviewer: Bruno Zimmermann (Trieste) MSC: 32G15 30C99 37F31 PDF BibTeX XML Cite \textit{Y. Jiang}, Conform. Geom. Dyn. 24, 109--117 (2020; Zbl 1447.32020) Full Text: DOI
Coccia, Simone; Ghioca, Dragos A variant of Siegel’s theorem for Drinfeld modules. (English) Zbl 07226985 J. Number Theory 216, 142-156 (2020). MSC: 11G50 11J68 37F10 PDF BibTeX XML Cite \textit{S. Coccia} and \textit{D. Ghioca}, J. Number Theory 216, 142--156 (2020; Zbl 07226985) Full Text: DOI
Dudko, Dzmitry; Lyubich, Mikhail; Selinger, Nikita Pacman renormalization and self-similarity of the Mandelbrot set near Siegel parameters. (English) Zbl 07225788 J. Am. Math. Soc. 33, No. 3, 653-733 (2020). MSC: 37E20 37F25 37F20 PDF BibTeX XML Cite \textit{D. Dudko} et al., J. Am. Math. Soc. 33, No. 3, 653--733 (2020; Zbl 07225788) Full Text: DOI
Levin, Genadi; Shen, Weixiao; van Strien, Sebastian Positive transversality via transfer operators and holomorphic motions with applications to monotonicity for interval maps. (English) Zbl 07225374 Nonlinearity 33, No. 8, 3970-4012 (2020). Reviewer: Mohammad Sajid (Buraidah) MSC: 37F44 37E05 37F10 37C30 PDF BibTeX XML Cite \textit{G. Levin} et al., Nonlinearity 33, No. 8, 3970--4012 (2020; Zbl 07225374) Full Text: DOI
Wright, Alex Totally geodesic submanifolds of Teichmüller space. (English) Zbl 1450.30065 J. Differ. Geom. 115, No. 3, 565-575 (2020). Reviewer: Subhojoy Gupta (Bangalore) MSC: 30F60 32G15 37F34 PDF BibTeX XML Cite \textit{A. Wright}, J. Differ. Geom. 115, No. 3, 565--575 (2020; Zbl 1450.30065) Full Text: DOI Euclid
Guerini, Lorenzo; Peters, Han Random local complex dynamics. (English) Zbl 1450.37048 Ergodic Theory Dyn. Syst. 40, No. 8, 2156-2182 (2020). Reviewer: Feng Rong (Shanghai) MSC: 37H15 37H12 37F12 32H02 32H50 PDF BibTeX XML Cite \textit{L. Guerini} and \textit{H. Peters}, Ergodic Theory Dyn. Syst. 40, No. 8, 2156--2182 (2020; Zbl 1450.37048) Full Text: DOI
Dupont, Christophe; Rogue, Axel Dimension of ergodic measures and currents on \(\mathbb{CP}(2)\). (English) Zbl 07220311 Ergodic Theory Dyn. Syst. 40, No. 8, 2131-2155 (2020). MSC: 37C45 37F10 37F80 32H50 32U40 PDF BibTeX XML Cite \textit{C. Dupont} and \textit{A. Rogue}, Ergodic Theory Dyn. Syst. 40, No. 8, 2131--2155 (2020; Zbl 07220311) Full Text: DOI
Boulanger, Adrien; Fougeron, Charles; Ghazouani, Selim Cascades in the dynamics of affine interval exchange transformations. (English) Zbl 1448.37047 Ergodic Theory Dyn. Syst. 40, No. 8, 2073-2097 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37E05 37E35 37C25 37F75 57M50 32G15 PDF BibTeX XML Cite \textit{A. Boulanger} et al., Ergodic Theory Dyn. Syst. 40, No. 8, 2073--2097 (2020; Zbl 1448.37047) Full Text: DOI
Favre, Charles Degeneration of endomorphisms of the complex projective space in the hybrid space. (English) Zbl 07219254 J. Inst. Math. Jussieu 19, No. 4, 1141-1183 (2020). MSC: 37F44 32P05 37P50 28A33 32H50 PDF BibTeX XML Cite \textit{C. Favre}, J. Inst. Math. Jussieu 19, No. 4, 1141--1183 (2020; Zbl 07219254) Full Text: DOI
Jaballah, Ali; Jarboui, Noômen From topologies of a set to subrings of its power set. (English) Zbl 1443.05187 Bull. Aust. Math. Soc. 102, No. 1, 15-20 (2020). MSC: 05E40 05A18 13B02 13B21 13E99 13M05 13M99 37F20 11B73 PDF BibTeX XML Cite \textit{A. Jaballah} and \textit{N. Jarboui}, Bull. Aust. Math. Soc. 102, No. 1, 15--20 (2020; Zbl 1443.05187) Full Text: DOI
Riedl, Johannes; Schleicher, Dierk Crossed renormalization of quadratic polynomials. (English) Zbl 07217782 Moree, Pieter (ed.) et al., Dynamics: topology and numbers. Conference, Max Planck Institute for Mathematics, Bonn, Germany, July 2–6, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5100-4/pbk; 978-1-4704-5454-8/ebook). Contemporary Mathematics 744, 317-347 (2020). MSC: 37F25 37F20 37F44 37F31 PDF BibTeX XML Cite \textit{J. Riedl} and \textit{D. Schleicher}, Contemp. Math. 744, 317--347 (2020; Zbl 07217782) Full Text: DOI
Blokh, Alexander; Oversteegen, Lex; Timorin, Vladlen Dynamical generation of parameter laminations. (English) Zbl 1447.37053 Moree, Pieter (ed.) et al., Dynamics: topology and numbers. Conference, Max Planck Institute for Mathematics, Bonn, Germany, July 2–6, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 744, 205-229 (2020). MSC: 37F20 37F10 37F50 PDF BibTeX XML Cite \textit{A. Blokh} et al., Contemp. Math. 744, 205--229 (2020; Zbl 1447.37053) Full Text: DOI
Jenkinson, Oliver; Pollicott, Mark Rigorous dimension estimates for Cantor sets arising in Zaremba theory. (English) Zbl 1447.11087 Moree, Pieter (ed.) et al., Dynamics: topology and numbers. Conference, Max Planck Institute for Mathematics, Bonn, Germany, July 2–6, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 744, 83-107 (2020). Reviewer: Symon Serbenyuk (Kyiv) MSC: 11K55 37C30 37F35 11A55 PDF BibTeX XML Cite \textit{O. Jenkinson} and \textit{M. Pollicott}, Contemp. Math. 744, 83--107 (2020; Zbl 1447.11087) Full Text: DOI
Hironaka, Eriko The augmented deformation space of rational maps. (English) Zbl 07217745 Castro-Jiménez, Francisco-Jesús (ed.) et al., A panorama of singularities. A panorama on singular varieties. Conference to celebrate Lê Dũng Tráng’s 70th birthday, University of Seville, IMUS, Spain, February 7–10, 2017. Providence, RI: American Mathematical Society (AMS); Madrid: Real Sociedad Matemática Española (RSME) (ISBN 978-1-4704-4792-2/pbk; 978-1-4704-5452-4/ebook). Contemporary Mathematics 742, 85-107 (2020). Reviewer: Shengyuan Zhao (Stony Brook) MSC: 37F10 37F12 37F20 37F44 37F34 PDF BibTeX XML Cite \textit{E. Hironaka}, Contemp. Math. 742, 85--107 (2020; Zbl 07217745) Full Text: DOI
Hittmeyer, Stefanie; Krauskopf, Bernd; Osinga, Hinke M. Generalized Mandelbrot and Julia sets in a family of planar angle-doubling maps. (English) Zbl 07216694 Bohner, Martin (ed.) et al., Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21–25, 2018. Proceedings of the 24th international conference on difference equations and applications. Cham: Springer (ISBN 978-3-030-35501-2/hbk; 978-3-030-35502-9/ebook). Springer Proceedings in Mathematics & Statistics 312, 21-54 (2020). Reviewer: Tao Chen (New York) MSC: 37F10 37F12 30D05 65E05 65E10 PDF BibTeX XML Cite \textit{S. Hittmeyer} et al., in: Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21--25, 2018. Proceedings of the 24th international conference on difference equations and applications. Cham: Springer. 21--54 (2020; Zbl 07216694) Full Text: DOI
Arosio, Leandro; Lárusson, Finnur Generic aspects of holomorphic dynamics on highly flexible complex manifolds. (English) Zbl 1442.32028 Ann. Mat. Pura Appl. (4) 199, No. 4, 1697-1711 (2020). MSC: 32M05 32Q28 32Q56 32H50 37F99 PDF BibTeX XML Cite \textit{L. Arosio} and \textit{F. Lárusson}, Ann. Mat. Pura Appl. (4) 199, No. 4, 1697--1711 (2020; Zbl 1442.32028) Full Text: DOI
Hirsch, M. W.; Turiel, F. J. Primary singularities of vector fields on surfaces. (English) Zbl 07216275 Geom. Dedicata 207, 243-253 (2020). MSC: 20F16 58J20 37F75 54H25 PDF BibTeX XML Cite \textit{M. W. Hirsch} and \textit{F. J. Turiel}, Geom. Dedicata 207, 243--253 (2020; Zbl 07216275) Full Text: DOI
Alcántara, Claudia R.; Pantaleón-Mondragón, Rubí Foliations on \(\mathbb{CP}^2\) with a unique singular point without invariant algebraic curves. (English) Zbl 1445.37034 Geom. Dedicata 207, 193-200 (2020). MSC: 37F75 13P10 32S65 32M25 PDF BibTeX XML Cite \textit{C. R. Alcántara} and \textit{R. Pantaleón-Mondragón}, Geom. Dedicata 207, 193--200 (2020; Zbl 1445.37034) Full Text: DOI
Cantat, Serge; Xie, Junyi On degrees of birational mappings. (English) Zbl 1441.14044 Math. Res. Lett. 27, No. 2, 319-337 (2020). Reviewer: Shengyuan Zhao (Stony Brook) MSC: 14E07 37F10 32H50 PDF BibTeX XML Cite \textit{S. Cantat} and \textit{J. Xie}, Math. Res. Lett. 27, No. 2, 319--337 (2020; Zbl 1441.14044) Full Text: DOI
Mercat, Paul Rauzy fractal of the smallest substitution associated with the smallest Pisot number. (English) Zbl 1441.28010 Exp. Math. 29, No. 2, 163-182 (2020). MSC: 28A80 37B10 37F20 68R15 PDF BibTeX XML Cite \textit{P. Mercat}, Exp. Math. 29, No. 2, 163--182 (2020; Zbl 1441.28010) Full Text: DOI
Blokh, Alexander; Oversteegen, Lex; Ptacek, Ross; Timorin, Vladlen Laminational models for some spaces of polynomials of any degree. (English) Zbl 07213377 Memoirs of the American Mathematical Society 1288. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4176-0/pbk; 978-1-4704-6144-7/ebook). v, 105 p. (2020). MSC: 37-02 37F20 37F10 37F50 PDF BibTeX XML Cite \textit{A. Blokh} et al., Laminational models for some spaces of polynomials of any degree. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 07213377) Full Text: DOI
Moree, Pieter (ed.); Pohl, Anke (ed.); Snoha, Ľubomír (ed.); Ward, Tom (ed.) Dynamics: topology and numbers. Conference, Max Planck Institute for Mathematics, Bonn, Germany, July 2–6, 2018. (English) Zbl 1448.37001 Contemporary Mathematics 744. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5100-4/pbk; 978-1-4704-5454-8/ebook). x, 347 p. (2020). MSC: 37-06 37Axx 37Bxx 37Dxx 37Exx 37Fxx 00B25 PDF BibTeX XML Cite \textit{P. Moree} (ed.) et al., Dynamics: topology and numbers. Conference, Max Planck Institute for Mathematics, Bonn, Germany, July 2--6, 2018. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 1448.37001) Full Text: DOI
Benini, Anna Miriam; Fagella, Núria A bound on the number of rationally invisible repelling orbits. (English) Zbl 07212199 Adv. Math. 370, Article ID 107214, 26 p. (2020). Reviewer: Tao Chen (New York) MSC: 37F15 37F12 PDF BibTeX XML Cite \textit{A. M. Benini} and \textit{N. Fagella}, Adv. Math. 370, Article ID 107214, 26 p. (2020; Zbl 07212199) Full Text: DOI
Ramadas, Rohini Dynamical degrees of Hurwitz correspondences. (English) Zbl 1443.14031 Ergodic Theory Dyn. Syst. 40, No. 7, 1968-1990 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14H10 14N99 14M99 37F05 PDF BibTeX XML Cite \textit{R. Ramadas}, Ergodic Theory Dyn. Syst. 40, No. 7, 1968--1990 (2020; Zbl 1443.14031) Full Text: DOI
Kao, Lien-Yung Manhattan curves for hyperbolic surfaces with cusps. (English) Zbl 07210456 Ergodic Theory Dyn. Syst. 40, No. 7, 1843-1874 (2020). MSC: 37D35 37D40 30F60 37F20 37F32 37B10 PDF BibTeX XML Cite \textit{L.-Y. Kao}, Ergodic Theory Dyn. Syst. 40, No. 7, 1843--1874 (2020; Zbl 07210456) Full Text: DOI
Gu, Yongyi; Wu, Chengfa; Yao, Xiao; Yuan, Wenjun Characterizations of all real solutions for the KdV equation and \(W_{\mathbb{R}}\). (English) Zbl 1442.35375 Appl. Math. Lett. 107, Article ID 106446, 7 p. (2020). MSC: 35Q53 34M05 37F10 PDF BibTeX XML Cite \textit{Y. Gu} et al., Appl. Math. Lett. 107, Article ID 106446, 7 p. (2020; Zbl 1442.35375) Full Text: DOI
Contreras, Manuel D.; Díaz-Madrigal, Santiago Boundary fixed points vs. critical points in semigroups of holomorphic self-maps of the unit disc. (English) Zbl 1444.37039 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 137, 8 p. (2020). MSC: 37F44 37F20 37C25 PDF BibTeX XML Cite \textit{M. D. Contreras} and \textit{S. Díaz-Madrigal}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 137, 8 p. (2020; Zbl 1444.37039) Full Text: DOI
Dinh, Tien-Cuong; Kaufmann, Lucas; Wu, Hao Dynamics of holomorphic correspondences on Riemann surfaces. (English) Zbl 1450.37041 Int. J. Math. 31, No. 5, Article ID 2050036, 21 p. (2020). Reviewer: Marek Jarnicki (Kraków) MSC: 37F05 37F15 32U15 32U05 PDF BibTeX XML Cite \textit{T.-C. Dinh} et al., Int. J. Math. 31, No. 5, Article ID 2050036, 21 p. (2020; Zbl 1450.37041) Full Text: DOI
Gaidashev, Denis; Yampolsky, Michael Renormalization of almost commuting pairs. (English) Zbl 1446.37040 Invent. Math. 221, No. 1, 203-236 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37E10 37E45 37F15 37F25 PDF BibTeX XML Cite \textit{D. Gaidashev} and \textit{M. Yampolsky}, Invent. Math. 221, No. 1, 203--236 (2020; Zbl 1446.37040) Full Text: DOI
Dudko, Artem; Sutherland, Scott On the Lebesgue measure of the Feigenbaum Julia set. (English) Zbl 07207179 Invent. Math. 221, No. 1, 167-202 (2020). Reviewer: Walter Bergweiler (Kiel) MSC: 37F10 37F25 37F35 28A78 30D05 PDF BibTeX XML Cite \textit{A. Dudko} and \textit{S. Sutherland}, Invent. Math. 221, No. 1, 167--202 (2020; Zbl 07207179) Full Text: DOI
Gargiulo Acea, Javier Logarithmic forms and singular projective foliations. (Formes logarithmiques et feuilletages projectifs singuliers.) (English. French summary) Zbl 1443.14014 Ann. Inst. Fourier 70, No. 1, 171-203 (2020). Reviewer: Alan Muniz (Belo Horizonte) MSC: 14D20 14F10 37F75 14B10 32S65 PDF BibTeX XML Cite \textit{J. Gargiulo Acea}, Ann. Inst. Fourier 70, No. 1, 171--203 (2020; Zbl 1443.14014) Full Text: DOI
Hironaka, Eriko Quotient families of mapping classes. (English) Zbl 07206844 Topol. Proc. 56, 161-194 (2020). MSC: 14J50 37F15 57M27 PDF BibTeX XML Cite \textit{E. Hironaka}, Topol. Proc. 56, 161--194 (2020; Zbl 07206844) Full Text: Link
Pakovich, F. Algebraic curves \(A^{\circ l}(x)-U(y)=0\) and arithmetic of orbits of rational functions. (English) Zbl 07206638 Mosc. Math. J. 20, No. 1, 153-183 (2020). MSC: 37F10 37P55 14G05 14H45 PDF BibTeX XML Cite \textit{F. Pakovich}, Mosc. Math. J. 20, No. 1, 153--183 (2020; Zbl 07206638) Full Text: Link
Nikdelan, Younes Modular vector fields attached to dwork family: \(\mathfrak{sl}_2(\mathbb{C})\) Lie algebra. (English) Zbl 07206637 Mosc. Math. J. 20, No. 1, 127-151 (2020). MSC: 32M25 37F99 14J15 14J32 PDF BibTeX XML Cite \textit{Y. Nikdelan}, Mosc. Math. J. 20, No. 1, 127--151 (2020; Zbl 07206637) Full Text: Link