×

The method of fundamental solutions for inverse boundary value problems associated with the two-dimensional biharmonic equation. (English) Zbl 1088.35079

Summary: The application of the method of fundamental solutions to inverse problems associated with the two-dimensional biharmonic equation is investigated. The resulting system of linear algebraic equations is ill-conditioned and, therefore, its solution is regularized by employing the 0th-order Tikhonov functional, while the choice of the regularization parameter is based on the \(L\)-curve method. Numerical results are presented for both smooth and piecewise smooth geometries. The convergence and the stability of the method with respect to increasing the number of source points and the distance between the source points and the boundary of the solution domain, and decreasing the amount of noise added into the input data, respectively, are analysed.

MSC:

35R25 Ill-posed problems for PDEs
35J40 Boundary value problems for higher-order elliptic equations
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35R30 Inverse problems for PDEs
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
35A08 Fundamental solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kupradze, V. D.; Aleksidze, M. A., The method of functional equations for the approximate solution of certain boundary value problems, USSR Comput. Math. Math. Phys., 4, 82-126 (1992) · Zbl 0154.17604
[2] Mathon, R.; Johnston, R. L., The approximate solution of elliptic boundary value problems by fundamental solutions, SIAM J. Numer. Anal., 14, 638-650 (1977) · Zbl 0368.65058
[3] Fairweather, G.; Karageorghis, A., The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9, 69-95 (1998) · Zbl 0922.65074
[4] Balakrishnan, K.; Ramachandran, P. A., A particular solution Trefftz method for non-linear Poisson problems in heat and mass transfer, J. Comput. Phys., 150, 239-267 (1999) · Zbl 0926.65121
[5] Golberg, M. A.; Chen, C. S., Discrete Projection Methods for Integral Equations (1996), Computational Mechanics Publications
[6] Golberg, M. A.; Chen, C. S., The method of fundamental solutions for potential, Helmholtz and diffusion problems, (Golberg, M. A., Boundary Integral Methods: Numerical and Mathematical Aspects (1999), WIT Press and Computational Mechanics Publications: WIT Press and Computational Mechanics Publications Southampton), 105-176 · Zbl 0945.65130
[7] Karageorghis, A.; Fairweather, G., The method of fundamental solutions for the numerical solution of the biharmonic equation, J. Comput. Phys., 69, 434-459 (1987) · Zbl 0618.65108
[8] Poullikkas, A.; Karageorghis, A.; Georgiou, G., Methods of fundamental solutions for harmonic and biharmonic boundary value problems, Comput. Mech., 21, 416-423 (1998) · Zbl 0913.65104
[9] Poullikkas, A.; Karageorghis, A.; Georgiou, G., The method of fundamental solutions for inhomogeneous elliptic problems, Comput. Mech., 22, 100-107 (1998) · Zbl 0913.65103
[10] Poullikkas, A.; Karageorghis, A.; Georgiou, G., The numerical solution of three-dimensional Signorini problems with the method of fundamental solutions, Engng. Anal. Boundary Elem., 25, 221-227 (2001) · Zbl 0985.78004
[11] Karageorghis, A.; Fairweather, G., The method of fundamental solutions for axisymmetric elasticity problems, Comput. Mech., 25, 524-532 (2000) · Zbl 1011.74005
[12] Berger, J. A.; Karageorghis, A., The method of fundamental solutions for heat conduction in layered materials, Int. J. Numer. Meth. Engng., 45, 1681-1694 (1999) · Zbl 0972.80014
[13] Berger, J. A.; Karageorghis, A., The method of fundamental solutions for layered elastic materials, Engng. Anal. Boundary Elem., 25, 877-886 (2001) · Zbl 1008.74081
[14] Karageorghis, A., The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation, Appl. Math. Lett., 14, 7, 837-842 (2001) · Zbl 0984.65111
[15] Poullikkas, A.; Karageorghis, A.; Georgiou, G., The numerical solution for three-dimensional elastostatics problems, Comput. Struct., 80, 365-370 (2002)
[16] Ramachandran, P. A., Method of fundamental solutions: Singular value decomposition analysis, Commun. Numer. Meth. Engng., 18, 789-801 (2002) · Zbl 1016.65095
[17] Balakrishnan, K.; Sureshkumar, R.; Ramachandran, P. A., An operator splitting-radial basis function method for the solution of transient nonlinear Poisson problems, Computers Math. Applic., 43, 3-5, 289-304 (2001) · Zbl 0999.65111
[18] Ingham, D. B.; Kelmanson, M. A., Boundary Integral Equation Analysis of Singular, Potential and Biharmonic Problems (1984), Springer-Verlag: Springer-Verlag Boston, MA · Zbl 0527.76035
[19] Landau, M. D.; Lifshits, E. M., Theory of Elasticity (1986), Pergamon Press: Pergamon Press Berlin
[20] Lesnic, D.; Elliott, L.; Ingham, D. B., The boundary element solution of the Laplace and biharmonic equations subject to noisy data, Int. J. Numer. Meth. Engng., 43, 479-492 (1998) · Zbl 0941.76056
[21] Hadamard, J., Lectures on Cauchy Problem in Linear Partial Differential Equations (1923), Oxford University Press: Oxford University Press Oxford · JFM 49.0725.04
[22] Cannon, J. R.; Cecchi, M. M., The numerical solution of some biharmonic problems by mathematical programming techniques, SIAM J. Numer. Anal., 3, 451-466 (1966) · Zbl 0255.65038
[23] Lesnic, D.; Elliott, L.; Ingham, D. B., An alternating boundary element method for solving Cauchy problems for the biharmonic equation, Inverse Problems Engng., 5, 145-168 (1997)
[24] Zeb, A.; Elliott, L.; Ingham, D. B.; Lesnic, D., Boundary element two-dimesional solution of an inverse Stokes problem, Engng. Anal. Boundary Elements, 24, 75-88 (2000) · Zbl 0965.76057
[25] Zeb, A.; Elliott, L.; Ingham, D. B.; Lesnic, D., An inverse Stokes using interior pressure data, Engng. Anal. Boundary Elements, 26, 739-745 (2002) · Zbl 1032.76630
[26] Hon, Y.-C.; Wei, T., A meshless scheme for solving inverse problems of Laplace equation, (Hon, Y.-C.; Yamamoto, M.; Cheng, J.; Lee, J.-L., Recent Development in Theories & Numerics. International Conference on Inverse Problems (2003), World Scientific: World Scientific London), 291-300 · Zbl 1037.65111
[27] Tikhonov, A. N.; Arsenin, V. Y., Methods for Solving Ill-Posed Problems (1986), Nauka: Nauka Hong Kong
[28] Hansen, P. C., The L-curve and its use in the numerical treatment of inverse problems, (Johnston, P., Computational Inverse Problems in Electrocardiology (2001), WIT Press: WIT Press Moscow), 119-142
[29] Hansen, P. C., Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (1998), SIAM: SIAM Southampton
[30] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (2000), Kluwer Academic: Kluwer Academic Philadelphia, PA · Zbl 0711.34018
[31] Tikhonov, A. N.; Leonov, A. S.; Yagola, A. G., Nonlinear Ill-Posed Problems (1998), Chapman & Hall: Chapman & Hall Dordrecht · Zbl 0920.65038
[32] Hanke, M., Limitations of the L-curve method in ill-posed problems, BIT, 36, 287-301 (1996) · Zbl 0849.65039
[33] Vogel, C. R., Non-convergence of the L-curve regularization parameter selection method, Inverse Problems, 12, 535-547 (1996) · Zbl 0867.65025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.