×

Mini-workshop: Dimers, Ising and spanning trees beyond the critical isoradial case. Abstracts from the mini-workshop held November 15–21, 2020 (online meeting). (English) Zbl 1473.00042

Summary: The goal of this mini-workshop is to gather specialists of the dimer, Ising and spanning tree models around recent and ongoing progress in two directions. One is understanding the connection to the spectral curve of these models in the cases when the curve has positive genus. The other is the introduction of universal embeddings associated to these models. We aim to use these new tools to progress in the study of scaling limits.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
82-06 Proceedings, conferences, collections, etc. pertaining to statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
05-06 Proceedings, conferences, collections, etc. pertaining to combinatorics
14H70 Relationships between algebraic curves and integrable systems
52C26 Circle packings and discrete conformal geometry
30G25 Discrete analytic functions
53A70 Discrete differential geometry
13F60 Cluster algebras
51A20 Configuration theorems in linear incidence geometry
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Groeneveld, R.J. Boel, P.W. Kasteleyn Correlation-function identities for general planar Ising systems, Physica A: Statistical Mechanics and its Applications 93 (1978), 138-154.
[2] M. Lis The Planar Ising Model and Total Positivity, Journal of Statistical Physics 166 (2017), 72-89. · Zbl 1371.82024
[3] M. Aizenman, H. Duminil-Copin, V. Tassion, S. Warzel, Emergent planarity in two-dimensional Ising models with finite-range Interactions, Inventiones Mathematicae 216 (2019), 661-743. · Zbl 1417.82022
[4] R. B. Griffiths, C. A. Hurst, S. Sherman, Concavity of Magnetization of an Ising Ferromag-net in a Positive External Field, Journal of Mathematical Physics 11 (1970), 790-795.
[5] M. Lis On boundary correlations in planar Ashkin-Teller models, arXiv (2020), 2009.12131. References
[6] Benjamini, I. and Schramm, O. Percolation in the hyperbolic plane, Journal of the American Mathematical Society 14 (2000), 487-507. · Zbl 1037.82018
[7] Li, Z. Site percolation on planar graphs, arXiv (2020), 2005.04529.
[8] Babai, L. The growth rate of vertex-transitive planar graphs, Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans (1997), 564-573. · Zbl 1321.05059
[9] Halslegrave, J. and Panagiotis, C. Site percolation and isoperimetric inequalities for plane graphs, Random Structures and Algorithms 58 (2020), 150-163. · Zbl 1522.05065
[10] Duminil-Copin, H. Sixty years of percolation, Proceedings of the ICM Rio (2018). · Zbl 1453.82034
[11] Grimmett, G. Percolation, Springer (1999).
[12] Benjamini, I. and Schramm, O. Percolation beyond Z d , many questions and a few answers, Electronic Communications in Probability 1 (1996), 71-82. · Zbl 0890.60091
[13] Li, Z. Constrained percolation, Ising model and XOR Ising model on planar lattices, Random Structures and Algorithms 57 (2020), 474-525. · Zbl 1453.82036
[14] Broadbent, S. and Hammersley, J. Percolation processes: I. Crystals and mazes, Mathe-matical Proceedings of the Cambridge Philosophical Society 53 (1957), 479-497. · Zbl 0091.13901
[15] D. Chelkak, Planar Ising model at criticality: state-of-the-art and perspectives, In Proceed-ings of the International Congress of Mathematicians 2018 3 (2018). 2789-2816.
[16] D. Chelkak. Ising model and s-embeddings of planar graphs, arXiv (2020), 2006.14559.
[17] D. Chelkak, B. Laslier, M. Russkikh, Dimer model and holomorphic functions on t-embeddings of planar graphs, arXiv (2020), 2001:11871.
[18] D. Chelkak, B. Laslier, M. Russkikh, Bipartite dimer model: p-embeddings and Lorentz-minimal surfaces, In preparation (2021).
[19] D. Chelkak, S. Ramassamy, Fluctuations in the Aztec diamonds via a Lorentz-minimal surface, arXiv (2020), 2002.07540.
[20] D. Chelkak, S. Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math. 189 3 (2012), 515-580. · Zbl 1257.82020
[21] S. Chhita, The height fluctuations of an off-critical dimer model on the square grid, J. Stat. Phys. 148 2 (2012), 67-88. · Zbl 1253.82010
[22] O. Gurel-Gurevich, D. C. Jerison, A. Nachmias, The Dirichlet problem for orthodiagonal maps, Adv. Math. 374 (2020), 53 pp. · Zbl 1460.31026
[23] R. Kenyon, W. Y. Lam, S. Ramassamy, M. Russkikh, Dimers and circle patterns, arXiv (2018) 1810.05616.
[24] R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers equation, Acta Math. 199(2) (2007), 263-302. · Zbl 1156.14029
[25] M. Lis, Circle patterns and critical Ising models, Comm. Math. Phys. 370 (2019), 507-530. References · Zbl 1426.82011
[26] M. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann man-ifold, RIMS Kokyuroku (1981) 439, 30-46. · Zbl 0507.58029
[27] B.A. Dubrovin, Theta functions and non-linear equations, Russ. Math. Surv. (1981) 36 2. References · Zbl 0478.58038
[28] Cédric Boutillier, David Cimasoni, and Béatrice de Tilière, Isoradial immersions, arXiv (2019), 1912.10297.
[29] Cédric Boutillier, David Cimasoni, and Béatrice de Tilière, Elliptic dimers on minimal graphs and genus 1 Harnack curves, arXiv (2020), 2007.14699.
[30] Cédric Boutillier, David Cimasoni, and Béatrice de Tilière, Dimers on minimal graphs and genus g Harnack curves, (2020+).
[31] Vladimir V. Fock, Inverse spectral problem for GK integrable system, arXiv (2015), 1503.00289.
[32] Alexander B. Goncharov and Richard Kenyon, Dimers and cluster integrable systems, Ann. Sci.Éc. Norm. Supér. (2013) 46(5):747-813. · Zbl 1288.37025
[33] Richard Kenyon, The Laplacian and Dirac operators on critical planar graphs, Invent. Math. (2002) 150(2):409-439. · Zbl 1038.58037
[34] Richard Kenyon and Andrei Okounkov, Planar dimers and Harnack curves, Duke Math. J. (2006) 131(3):499-524. · Zbl 1100.14047
[35] Richard Kenyon, Andrei Okounkov, and Scott Sheffield, Dimers and amoebae, Ann. of Math. (2) (2006) 163(3):1019-1056. · Zbl 1154.82007
[36] Thurston, Dylan P. From Dominoes to Hexagons, Proceedings of the 2014 Maui and 2015 · Zbl 1407.52021
[37] Qinhuangdao Conferences in Honour of Vaughan F.R. Jones’ 60th Birthday (2017), 399-414.
[38] Niklas Affolter and Max Glick and Pavlo Pylyavskyy and Sanjay Ramassamy Vector-relation configurations and plabic graphs, arXiv (2019), 1908.06959.
[39] Max Glick The pentagram map and Y-patterns, Advances in Mathematics 227 (2011), 1019-1045. · Zbl 1229.05021
[40] R. Kenyon, W. Y. Lam, S. Ramassamy and M. Russkikh, Dimers and circle patterns, arXiv (2018), 1810.05616.
[41] Niklas C. Affolter, Miquel Dynamics, Clifford Lattices and the Dimer Model, arXiv (2018), 1808.04227. References · Zbl 1467.82043
[42] D. Chelkak and S. Smirnov, Discrete complex analysis on isoradial graphs, Adv. Math. 228 (2011), 1590-1630. · Zbl 1227.31011
[43] R. Courant, K. Friedrichs, and H. Lewy,Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 (1928), 32-74. · JFM 54.0486.01
[44] B. Duplantier, J. Miller, and S. Sheffield, Liouville quantum gravity as a mating of trees, arXiv (2014), 1409.7055
[45] B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Invent. Math. (2011) 185, 333-393. · Zbl 1226.81241
[46] O. Gurel-Gurevich, D. C. Jerison, and A. Nachmias, A combinatorial criterion for macro-scopic circles in planar triangulations, arXiv (2019), 1906.01612.
[47] O. Gurel-Gurevich, D. C. Jerison, and A. Nachmias, The Dirichlet problem for orthodiagonal maps, Adv. Math. (2020) 374, 53. · Zbl 1460.31026
[48] E. Gwynne, J. Miller, and S. Sheffield, The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity, arXiv (2017), 1705.11161. · Zbl 1484.60007
[49] R. Kenyon and J.-M. Schlenker, Rhombic embeddings of planar quad-graphs, Trans. Amer. Math. Soc. (2005) 357, 3443-3458. · Zbl 1062.05045
[50] J.-F. Le Gall, Random geometry on the sphere, In Proceedings of the International Congress of Mathematicians-Seoul 2014. Vol. 1 (2014) 421-442. · Zbl 1373.60025
[51] G. Miermont, Aspects of random maps, Saint-Flour lecture notes (2014) http://perso.ens-lyon.fr/gregory.miermont/coursSaint-Flour.pdf.
[52] M. Skopenkov, The boundary value problem for discrete analytic functions Adv. Math. (2013) 240 61-87. · Zbl 1278.39008
[53] S. Smirnov, Discrete complex analysis and probability, In Proceedings of the International Congress of Mathematicians. Volume I (2010) 595-621. · Zbl 1251.30049
[54] B. M. Werness, Discrete analytic functions on non-uniform lattices without global geometric control, arXiv (2015), 1511.01209.
[55] D. Chelkak, Planar Ising model at criticality: state-of-the-art and perspectives, Proc. Int. Cong. of Math. -Rio de Janeiro (2018) IV 2801-2828. · Zbl 1453.82006
[56] R. Kenyon, W. Y. Lam, S. Ramassamy and M. Russkikh, Dimers and circle patterns, arXiv (2019), 1810.05616.
[57] B. G. Konopelchenko and W. K. Schief, Reciprocal figures, graphical statics, and inversive geometry of the Schwarzian BKP hierarchy, Stud. Appl. Math. (2002) 109 89-124. · Zbl 1114.37305
[58] P. Melotti, S. Ramassamy and P. Thévenin, Cube moves for s-embeddings and α-realizations, arXiv (2020), 2003.08941.
[59] Terrence George Spectra of biperiodic planar networks, arXiv (2019), 1901.06353.
[60] Boutillier C., de Tilière B., Raschel K. The Z-invariant massive Laplacian on isoradial graphs. Invent. math. 208 (2017), 109. · Zbl 1372.82016
[61] Curtis E. B., Ingerman D., Morrow J. A. Circular planar graphs and resistor networks. Linear Algebra Appl. 283 (1998), 115-150. · Zbl 0931.05051
[62] Fock V. V.: Inverse spectral problem for GK integrable systems. arXiv (2015), 1503.00289.
[63] Fock V., Marshakov A. Loop Groups, Clusters, Dimers and Integrable Systems. Geometry and Quantization of Moduli Spaces. Advanced Courses in Mathematics. Birkhäuser, Cham (2016). · Zbl 1417.37248
[64] Alexander B. Goncharov and Richard Kenyon, Dimers and cluster integrable systems, Ann. Sci.Éc. Norm. Supér. 46 (2013), 747-813. · Zbl 1288.37025
[65] Kenyon R. The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150 (2002), 409-439. · Zbl 1038.58037
[66] Lam T., Pylyavskyy P. Laurent phenomenon algebras. Cambridge Journal of Mathematics 4 (2016), 121-162. Reporter: Niklas Affolter · Zbl 1430.13036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.