×

A comment on some new definitions of fractional derivative. (English) Zbl 1398.28001

Summary: After reviewing the definition of two differential operators which have been recently introduced by Caputo and Fabrizio and, separately, by Atangana and Baleanu, we present an argument for which these two integro-differential operators can be understood as simple realizations of a much broader class of fractional operators, i.e. the theory of Prabhakar fractional integrals. Furthermore, we also provide a series expansion of the Prabhakar integral in terms of Riemann-Liouville integrals of variable order. Then, by using this last result we finally argue that the operator introduced by Caputo and Fabrizio cannot be regarded as fractional. Besides, we also observe that the one suggested by Atangana and Baleanu is indeed fractional, but it is ultimately related to the ordinary Riemann-Liouville and Caputo fractional operators. All these statements are then further supported by a precise analysis of differential equations involving the aforementioned operators. To further strengthen our narrative, we also show that these new operators do not add any new insight to the linear theory of viscoelasticity when employed in the constitutive equation of the Scott-Blair model.

MSC:

28A33 Spaces of measures, convergence of measures
34A08 Fractional ordinary differential equations

Software:

ML
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Caputo, M; Fabrizio, M, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 73-85, (2015) · doi:10.12785/pfda/010201
[2] Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014) · Zbl 1309.33001 · doi:10.1007/978-3-662-43930-2
[3] Atangana, A; Baleanu, D, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 763-769, (2016) · doi:10.2298/TSCI160111018A
[4] Gorenflo, R; Mainardi, F; Carpinteri, A (ed.); Mainardi, F (ed.), Fractional calculus: integral and differential equations of fractional order, (1997), New York · Zbl 0917.73004
[5] Mainardi, F; Carpinteri, A (ed.); Mainardi, F (ed.), Fractional calculus: some basic problems in continuum and statistical mechanics, (1997), New York · Zbl 0917.73004
[6] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010) · Zbl 1210.26004 · doi:10.1142/p614
[7] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications, vol. 44. Gordon and Breach, Yverdon (1993) · Zbl 0818.26003
[8] Garra, R; Gorenflo, R; Polito, F; Tomovski, Z, Hilfer-prabhakar derivatives and some applications, Appl. Math. Comput., 242, 576-589, (2014) · Zbl 1334.26008 · doi:10.1016/j.amc.2014.05.129
[9] Garra, R; Garrappa, R, The prabhakar or three parameter Mittag-Leffler function: theory and application, Commun. Nonlinear Sci. Numer. Simul., 56, 314-329, (2018) · Zbl 1524.33083 · doi:10.1016/j.cnsns.2017.08.018
[10] Garrappa, R, Grünwald-Letnikov operators for fractional relaxation in havriliak-negami models, Commun. Nonlinear Sci. Numer. Simul., 38, 178-191, (2016) · Zbl 1471.47032 · doi:10.1016/j.cnsns.2016.02.015
[11] Garrappa, R; Mainardi, F; Maione, G, Models of dielectric relaxation based on completely monotone functions, Fract. Calc. Appl. Anal., 19, 1105-1160, (2016) · Zbl 1499.78010 · doi:10.1515/fca-2016-0060
[12] Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, Article ID 298628 (2011). https://doi.org/10.1155/2011/298628 · Zbl 1218.33021
[13] Kilbas, A; Saigo, M; Saxena, R, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integr. Transforms Spec. Funct., 15, 31-49, (2004) · Zbl 1047.33011 · doi:10.1080/10652460310001600717
[14] Mainardi, F; Garrappa, R, On complete monotonicity of the prabhakar function and non-Debye relaxation in dielectrics, J. Comput. Phys., 293, 70-80, (2015) · Zbl 1349.65085 · doi:10.1016/j.jcp.2014.08.006
[15] Polito, F; Tomovski, Z, Some properties of prabhakar-type fractional calculus operators, Fract. Differ. Calc., 6, 73-94, (2016) · Zbl 1424.26017 · doi:10.7153/fdc-06-05
[16] Srivastava, HM; Tomovski, Z, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211, 198-210, (2009) · Zbl 1432.30022 · doi:10.1016/j.amc.2009.01.055
[17] Giusti, A; Colombaro, I, Prabhakar-like fractional viscoelasticity, Commun. Nonlinear Sci. Numer. Simul., 56, 138-143, (2018) · Zbl 1510.74015 · doi:10.1016/j.cnsns.2017.08.002
[18] Ortigueira, MD; Tenreiro, Machado J, What is a fractional derivative?, J. Comput. Phys., 293, 4-13, (2015) · Zbl 1349.26016 · doi:10.1016/j.jcp.2014.07.019
[19] Prabhakar, TR, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19, 7-15, (1971) · Zbl 0221.45003
[20] Colombaro, I; Giusti, A; Vitali, S, Storage and dissipation of energy in prabhakar viscoelasticity, Mathematics, 6, 15, (2018) · Zbl 1454.74024 · doi:10.3390/math6020015
[21] Mainardi, F; Spada, G, Creep, relaxation and viscosity properties for basic fractional models in rheology, Eur. Phys. J. Spec. Topics, 193, 133-160, (2011) · doi:10.1140/epjst/e2011-01387-1
[22] Giusti, A, On infinite order differential operators in fractional viscoelasticity, Fract. Calc. Appl. Anal., 20, 854-867, (2017) · Zbl 1439.74082 · doi:10.1515/fca-2017-0045
[23] Ortigueira, MD; Tenreiro, Machado J, A critical analysis of the Caputo-fabrizio operator, Commun. Nonlinear Sci. Numer. Simul., 59, 608-611, (2018) · Zbl 1510.26004 · doi:10.1016/j.cnsns.2017.12.001
[24] Tarasov, VE, No nonlocality. no fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 62, 157-163, (2018) · Zbl 1470.26014 · doi:10.1016/j.cnsns.2018.02.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.