Albu, Toma; Castro Pérez, Jaime; Ríos Montes, José Prime, irreducible, and completely irreducible lattice preradicals on modular complete lattices. I. (English) Zbl 07507881 J. Algebra Appl. 21, No. 5, Article ID 2250097, 33 p. (2022). MSC: 06C05 06C99 06B35 16D80 16N80 16S90 18E15 PDF BibTeX XML Cite \textit{T. Albu} et al., J. Algebra Appl. 21, No. 5, Article ID 2250097, 33 p. (2022; Zbl 07507881) Full Text: DOI OpenURL
Albu, Toma; Kara, Yeliz; Tercan, Adnan Strongly fully invariant-extending modular lattices. (English) Zbl 07506797 Quaest. Math. 45, No. 3, 357-367 (2022). MSC: 06C05 06C99 06B35 16D80 PDF BibTeX XML Cite \textit{T. Albu} et al., Quaest. Math. 45, No. 3, 357--367 (2022; Zbl 07506797) Full Text: DOI OpenURL
Rump, Wolfgang Frobenius quantales, Serre quantales and the Riemann-Roch theorem. (English) Zbl 07496497 Stud. Log. 110, No. 2, 405-427 (2022). Reviewer: Sergejs Solovjovs (Praha) MSC: 14H55 03B47 06C05 06F07 14C40 18M10 PDF BibTeX XML Cite \textit{W. Rump}, Stud. Log. 110, No. 2, 405--427 (2022; Zbl 07496497) Full Text: DOI OpenURL
Charoenpol, Aveya; Chotwattakawanit, Udom The relationship of modular lattice with maximum pre-period property and minimum pre-period property. (English) Zbl 07491425 Int. J. Math. Comput. Sci. 17, No. 2, 881-889 (2022). MSC: 08A30 06C05 08A60 08A35 PDF BibTeX XML Cite \textit{A. Charoenpol} and \textit{U. Chotwattakawanit}, Int. J. Math. Comput. Sci. 17, No. 2, 881--889 (2022; Zbl 07491425) Full Text: Link OpenURL
Ötken, Hasan Hüseyin \(G\)-supplemented lattices. (English) Zbl 1474.06030 Miskolc Math. Notes 22, No. 1, 435-441 (2021). MSC: 06C05 06C15 PDF BibTeX XML Cite \textit{H. H. Ötken}, Miskolc Math. Notes 22, No. 1, 435--441 (2021; Zbl 1474.06030) Full Text: DOI OpenURL
Stepanova, Alena A. \(S\)-acts over a well-ordered monoid with modular congruence lattice. (English) Zbl 07351221 Izv. Irkutsk. Gos. Univ., Ser. Mat. 35, 87-102 (2021). MSC: 06C05 08A30 PDF BibTeX XML Cite \textit{A. A. Stepanova}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 35, 87--102 (2021; Zbl 07351221) Full Text: DOI Link OpenURL
Picavet, Gabriel; Picavet-L’Hermitte, Martine FCP \(\Delta\)-extensions of rings. (English) Zbl 1466.13008 Arab. J. Math. 10, No. 1, 211-238 (2021). Reviewer: Grigore Călugăreanu (Cluj-Napoca) MSC: 13B02 13B21 13B22 06E05 06C05 13B30 PDF BibTeX XML Cite \textit{G. Picavet} and \textit{M. Picavet-L'Hermitte}, Arab. J. Math. 10, No. 1, 211--238 (2021; Zbl 1466.13008) Full Text: DOI arXiv OpenURL
Avallone, Anna; Barbieri, Giuseppina; Vitolo, Paolo; Weber, Hans Modular \(\mathrm{d}_0 \)-algebras. (English) Zbl 1464.06015 Boll. Unione Mat. Ital. 13, No. 4, 529-538 (2020). Reviewer: Jānis Cīrulis (Riga) MSC: 06F35 03G25 06A12 06C05 28B10 PDF BibTeX XML Cite \textit{A. Avallone} et al., Boll. Unione Mat. Ital. 13, No. 4, 529--538 (2020; Zbl 1464.06015) Full Text: DOI OpenURL
Ökten, Hasan Hüseyin; Pekin, Ayten Essential supplemented lattices. (English) Zbl 1474.06029 Miskolc Math. Notes 21, No. 2, 1013-1018 (2020). MSC: 06C05 06C15 06B23 PDF BibTeX XML Cite \textit{H. H. Ökten} and \textit{A. Pekin}, Miskolc Math. Notes 21, No. 2, 1013--1018 (2020; Zbl 1474.06029) Full Text: DOI OpenURL
Nebıyev, Celıl; Ökten, Hasan Hüseyın Cofinitely radical supplemented and cofinitely weak radical supplemented lattices. (English) Zbl 1474.06028 Miskolc Math. Notes 21, No. 2, 993-999 (2020). MSC: 06C05 06C15 PDF BibTeX XML Cite \textit{C. Nebıyev} and \textit{H. H. Ökten}, Miskolc Math. Notes 21, No. 2, 993--999 (2020; Zbl 1474.06028) Full Text: DOI OpenURL
Guo, Junying; Guo, Xiaojiang; Xiao, Fenfen Semimodular weak Brandt semigroups. (English) Zbl 1463.20083 Adv. Math., Beijing 49, No. 4, 429-442 (2020). MSC: 20M20 06C05 06C10 06D05 20M10 PDF BibTeX XML Cite \textit{J. Guo} et al., Adv. Math., Beijing 49, No. 4, 429--442 (2020; Zbl 1463.20083) Full Text: DOI OpenURL
Biçer, Çiğdem; Nebiyev, Celil Cofinitely \(\oplus\)-supplemented lattices. (English) Zbl 1463.06030 Miskolc Math. Notes 21, No. 1, 81-89 (2020). MSC: 06C05 06C15 06B23 PDF BibTeX XML Cite \textit{Ç. Biçer} and \textit{C. Nebiyev}, Miskolc Math. Notes 21, No. 1, 81--89 (2020; Zbl 1463.06030) Full Text: DOI OpenURL
Hirai, Hiroshi Uniform modular lattices and affine buildings. (English) Zbl 07244154 Adv. Geom. 20, No. 3, 375-390 (2020). MSC: 20E42 06C05 PDF BibTeX XML Cite \textit{H. Hirai}, Adv. Geom. 20, No. 3, 375--390 (2020; Zbl 07244154) Full Text: DOI arXiv OpenURL
Pardo-Guerra, Sebastián; Rincón-Mejía, Hugo Alberto; Zorrilla-Noriega, Manuel Gerardo Some isomorphic big lattices and some properties of lattice preradicals. (English) Zbl 1452.06004 J. Algebra Appl. 19, No. 7, Article ID 2050140, 29 p. (2020). Reviewer: Grigore Călugăreanu (Cluj-Napoca) MSC: 06C05 06C99 16S90 PDF BibTeX XML Cite \textit{S. Pardo-Guerra} et al., J. Algebra Appl. 19, No. 7, Article ID 2050140, 29 p. (2020; Zbl 1452.06004) Full Text: DOI OpenURL
Gao, Yibo A note on the modularization of lattices. (English) Zbl 1456.06008 Order 37, No. 2, 311-318 (2020). Reviewer: Fang Jie (Guangzhou) MSC: 06C05 06C99 PDF BibTeX XML Cite \textit{Y. Gao}, Order 37, No. 2, 311--318 (2020; Zbl 1456.06008) Full Text: DOI OpenURL
Kozhukhov, Igor’ B.; Pryanichnikov, Alekseĭ M.; Simakova, Aigul’ R. Conditions of modularity of the congruence lattice of an act over a rectangular band. (English. Russian original) Zbl 1457.20049 Izv. Math. 84, No. 2, 291-323 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 2, 90-125 (2020). Reviewer: S. K. Nimbhorkar (Aurangabad) MSC: 20M30 20M07 06B10 06C05 PDF BibTeX XML Cite \textit{I. B. Kozhukhov} et al., Izv. Math. 84, No. 2, 291--323 (2020; Zbl 1457.20049); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 2, 90--125 (2020) Full Text: DOI OpenURL
Sundarayya, P.; Kishore, T. Ravi Equivalent conditions for modularity. (English) Zbl 07480092 J. Discrete Math. Sci. Cryptography 22, No. 6, 1091-1099 (2019). MSC: 05-XX 94-XX 06C05 03G10 18B35 PDF BibTeX XML Cite \textit{P. Sundarayya} and \textit{T. R. Kishore}, J. Discrete Math. Sci. Cryptography 22, No. 6, 1091--1099 (2019; Zbl 07480092) Full Text: DOI OpenURL
Mostafanasab, Hojjat; Darani, Ahmad Yousefian Quasi-\(n\)-absorbing and semi-\(n\)-absorbing preradicals. (English) Zbl 07412063 Hacet. J. Math. Stat. 48, No. 5, 1286-1303 (2019). MSC: 16S90 06C05 16N20 PDF BibTeX XML Cite \textit{H. Mostafanasab} and \textit{A. Y. Darani}, Hacet. J. Math. Stat. 48, No. 5, 1286--1303 (2019; Zbl 07412063) Full Text: DOI OpenURL
Biçer, Çiğdem; Nebiyev, Celil \(\oplus\)-supplemented lattices. (English) Zbl 1449.06014 Miskolc Math. Notes 20, No. 2, 773-780 (2019). MSC: 06C15 06C05 PDF BibTeX XML Cite \textit{Ç. Biçer} and \textit{C. Nebiyev}, Miskolc Math. Notes 20, No. 2, 773--780 (2019; Zbl 1449.06014) Full Text: DOI OpenURL
Nimbhorkar, Shriram K.; Banswal, Deepali B. Some results on CLESS lattices. (English) Zbl 1454.06007 Palest. J. Math. 8, Spec. Iss. I, 456-466 (2019). MSC: 06C20 06C05 PDF BibTeX XML Cite \textit{S. K. Nimbhorkar} and \textit{D. B. Banswal}, Palest. J. Math. 8, 456--466 (2019; Zbl 1454.06007) Full Text: Link OpenURL
Albu, Toma; Castro Pérez, Jaime; Monte, José Ríos The lattice structure of all lattice preradicals on modular complete lattices, and applications. I. (English) Zbl 1463.06029 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 62(110), No. 1, 3-20 (2019). Reviewer: Jae Keol Park (Pusan) MSC: 06C05 06B23 18B40 PDF BibTeX XML Cite \textit{T. Albu} et al., Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 62(110), No. 1, 3--20 (2019; Zbl 1463.06029) OpenURL
Kohonen, Jukka Generating modular lattices of up to 30 elements. (English) Zbl 1476.06007 Order 36, No. 3, 423-435 (2019). Reviewer: Marcel Wild (Stellenbosch) MSC: 06C05 06C10 05A15 06-08 PDF BibTeX XML Cite \textit{J. Kohonen}, Order 36, No. 3, 423--435 (2019; Zbl 1476.06007) Full Text: DOI arXiv OpenURL
Gein, A. G.; Shushpanov, M. P. Free 3-generated lattices with standard element among generators. (English. Russian original) Zbl 1468.06011 Algebra Logic 57, No. 6, 399-413 (2019); translation from Algebra Logika 57, No. 6, 619-638 (2018). MSC: 06B25 06C05 06D05 PDF BibTeX XML Cite \textit{A. G. Gein} and \textit{M. P. Shushpanov}, Algebra Logic 57, No. 6, 399--413 (2019; Zbl 1468.06011); translation from Algebra Logika 57, No. 6, 619--638 (2018) Full Text: DOI OpenURL
Nimbhorkar, Shriram K.; Banswal, Deepali B. Generalizations of supplemented lattices. (English) Zbl 1423.06025 AKCE Int. J. Graphs Comb. 16, No. 1, 8-17 (2019). MSC: 06C05 06C15 PDF BibTeX XML Cite \textit{S. K. Nimbhorkar} and \textit{D. B. Banswal}, AKCE Int. J. Graphs Comb. 16, No. 1, 8--17 (2019; Zbl 1423.06025) Full Text: DOI OpenURL
Zuo, Kai; Wang, Xue-ping; Zhang, Xiaohong Structures of compactly generated lattices described by cut sets of \(L\)-valued sets. (English) Zbl 1418.06003 Soft Comput. 23, No. 12, 3913-3920 (2019). MSC: 06B05 06C05 06C10 06D05 PDF BibTeX XML Cite \textit{K. Zuo} et al., Soft Comput. 23, No. 12, 3913--3920 (2019; Zbl 1418.06003) Full Text: DOI OpenURL
Nebiyev, Celil On supplement elements in lattices. (English) Zbl 1438.06019 Miskolc Math. Notes 20, No. 1, 441-449 (2019). MSC: 06C05 06C15 PDF BibTeX XML Cite \textit{C. Nebiyev}, Miskolc Math. Notes 20, No. 1, 441--449 (2019; Zbl 1438.06019) Full Text: DOI OpenURL
Janelidze-Gray, Tamar A note on admissibility of closed Galois structures. (English) Zbl 07076045 Quaest. Math. 42, No. 5, 623-629 (2019). MSC: 18A20 18A22 18A40 18B10 06C05 PDF BibTeX XML Cite \textit{T. Janelidze-Gray}, Quaest. Math. 42, No. 5, 623--629 (2019; Zbl 07076045) Full Text: DOI OpenURL
Chajda, Ivan; Länger, Helmut Residuation in modular lattices and posets. (English) Zbl 07046993 Asian-Eur. J. Math. 12, No. 2, Article ID 1950092, 10 p. (2019). MSC: 06A11 06C15 06C05 PDF BibTeX XML Cite \textit{I. Chajda} and \textit{H. Länger}, Asian-Eur. J. Math. 12, No. 2, Article ID 1950092, 10 p. (2019; Zbl 07046993) Full Text: DOI arXiv OpenURL
Castro Pérez, Jaime; Medina Bárcenas, Mauricio; Río Montes, José; Zaldívar Corichi, Angel Boolean perspectives of idioms and the Boyle derivative. (English) Zbl 1417.06007 Appl. Categ. Struct. 27, No. 1, 65-84 (2019). MSC: 06C05 16D90 16S90 PDF BibTeX XML Cite \textit{J. Castro Pérez} et al., Appl. Categ. Struct. 27, No. 1, 65--84 (2019; Zbl 1417.06007) Full Text: DOI arXiv OpenURL
Randriambololona, Hugues Harder-Narasimhan theory for linear codes (with an appendix on Riemann-Roch theory). (English) Zbl 1409.14047 J. Pure Appl. Algebra 223, No. 7, 2997-3030 (2019). Reviewer: Juan Tena Ayuso (Valladolid) MSC: 14G50 94B27 05B35 06C05 06C10 11H71 14G40 14H60 14L24 94B05 94B75 PDF BibTeX XML Cite \textit{H. Randriambololona}, J. Pure Appl. Algebra 223, No. 7, 2997--3030 (2019; Zbl 1409.14047) Full Text: DOI arXiv OpenURL
Kohonen, Jukka Exponential lower bounds of lattice counts by vertical sum and 2-sum. (English) Zbl 1406.05008 Algebra Univers. 80, No. 1, Paper No. 13, 11 p. (2019). MSC: 05A15 06C05 06C10 PDF BibTeX XML Cite \textit{J. Kohonen}, Algebra Univers. 80, No. 1, Paper No. 13, 11 p. (2019; Zbl 1406.05008) Full Text: DOI arXiv OpenURL
Harding, J. Modularity is not canonical. (English) Zbl 07019856 Algebra Univers. 80, No. 1, Paper No. 8, 4 p. (2019). MSC: 06B23 06C05 03G10 PDF BibTeX XML Cite \textit{J. Harding}, Algebra Univers. 80, No. 1, Paper No. 8, 4 p. (2019; Zbl 07019856) Full Text: DOI OpenURL
Herrmann, Christian On the finiteness problem for classes of modular lattices. (English) Zbl 1472.06007 Algebra Univers. 80, No. 1, Paper No. 4, 3 p. (2019). MSC: 06C05 03D35 PDF BibTeX XML Cite \textit{C. Herrmann}, Algebra Univers. 80, No. 1, Paper No. 4, 3 p. (2019; Zbl 1472.06007) Full Text: DOI arXiv OpenURL
Albu, Toma; Kara, Yeliz; Tercan, Adnan Fully invariant-extending modular lattices, and applications. I. (English) Zbl 1477.06023 J. Algebra 517, 207-222 (2019). MSC: 06C05 06B35 16D80 PDF BibTeX XML Cite \textit{T. Albu} et al., J. Algebra 517, 207--222 (2019; Zbl 1477.06023) Full Text: DOI OpenURL
Cornut, Christophe On Harder-Narasimhan filtrations and their compatibility with tensor products. (English) Zbl 07469109 Confluentes Math. 10, No. 2, 3-49 (2018). MSC: 18M05 06C05 20E42 20G15 51E24 53C23 20G15 14G20 PDF BibTeX XML Cite \textit{C. Cornut}, Confluentes Math. 10, No. 2, 3--49 (2018; Zbl 07469109) Full Text: DOI arXiv OpenURL
de la Maza, Ana Cecilia; Moresi, Remo On rigid Hermitean lattices. II. (English) Zbl 1435.06006 Cubo 20, No. 1, 65-78 (2018). MSC: 06C05 06A12 06B25 PDF BibTeX XML Cite \textit{A. C. de la Maza} and \textit{R. Moresi}, Cubo 20, No. 1, 65--78 (2018; Zbl 1435.06006) Full Text: DOI OpenURL
Borkar, V.; Girase, P.; Phadatare, N. Classical Zariski topology on prime spectrum of lattice modules. (English) Zbl 1438.06022 J. Algebra Relat. Top. 6, No. 2, 1-14 (2018). MSC: 06D10 06B30 06C05 PDF BibTeX XML Cite \textit{V. Borkar} et al., J. Algebra Relat. Top. 6, No. 2, 1--14 (2018; Zbl 1438.06022) Full Text: DOI OpenURL
Shushpanov, M. P. Finiteness of a 3-generated lattice with seminormal and coseminormal elements among generators. (English. Russian original) Zbl 07001971 Algebra Logic 57, No. 3, 237-247 (2018); translation from Algebra Logika 57, No. 3, 362-376 (2018). MSC: 06B05 06C05 PDF BibTeX XML Cite \textit{M. P. Shushpanov}, Algebra Logic 57, No. 3, 237--247 (2018; Zbl 07001971); translation from Algebra Logika 57, No. 3, 362--376 (2018) Full Text: DOI OpenURL
Łazarz, Marcin An extension of Šik’s theorem on modular lattices. (English) Zbl 06990752 Math. Slovaca 68, No. 6, 1321-1326 (2018). MSC: 06C05 PDF BibTeX XML Cite \textit{M. Łazarz}, Math. Slovaca 68, No. 6, 1321--1326 (2018; Zbl 06990752) Full Text: DOI OpenURL
Herrmann, Christian; Ziegler, Martin Definable relations in finite-dimensional subspace lattices with involution. (English) Zbl 1472.03029 Algebra Univers. 79, No. 3, Paper No. 68, 26 p. (2018). MSC: 03C40 03C10 06C05 03G25 PDF BibTeX XML Cite \textit{C. Herrmann} and \textit{M. Ziegler}, Algebra Univers. 79, No. 3, Paper No. 68, 26 p. (2018; Zbl 1472.03029) Full Text: DOI OpenURL
Albu, Toma The conditions \(({C_i}), i=1,2,3,11,12\), in rings, modules, categories, and lattices. (English) Zbl 1441.06004 López-Permouth, Sergio R. (ed.) et al., Advances in rings and modules. Dedicated to Bruno J. Müller. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 715, 17-34 (2018). MSC: 06C05 06B35 16D80 16S90 18E10 PDF BibTeX XML Cite \textit{T. Albu}, Contemp. Math. 715, 17--34 (2018; Zbl 1441.06004) Full Text: DOI OpenURL
Biçer, Çiğdem; Nebiyev, Celil; Pancar, Ali Generalized supplemented lattices. (English) Zbl 1413.06011 Miskolc Math. Notes 19, No. 1, 141-147 (2018). MSC: 06C05 06C15 PDF BibTeX XML Cite \textit{Ç. Biçer} et al., Miskolc Math. Notes 19, No. 1, 141--147 (2018; Zbl 1413.06011) Full Text: DOI OpenURL
Wild, Marcel Tight embedding of modular lattices into partition lattices: progress and program. (English) Zbl 06963510 Algebra Univers. 79, No. 4, Paper No. 79, 49 p. (2018). MSC: 06C05 05A18 05B35 51A05 51D25 PDF BibTeX XML Cite \textit{M. Wild}, Algebra Univers. 79, No. 4, Paper No. 79, 49 p. (2018; Zbl 06963510) Full Text: DOI arXiv OpenURL
McKenzie, Ralph N.; McNulty, George F.; Taylor, Walter F. Algebras, lattices, varieties. Volume I. With an additional bibliography. Reprint of the 1987 original published by Wadsworth & Brooks/Cole Advanced Books & Software. (English) Zbl 1392.08001 Providence, RI: AMS Chelsea Publishing (ISBN 978-1-4704-4295-8/hbk; 978-1-4704-4719-9/ebook). xii, 367 p. (2018). MSC: 08-01 06-01 08A30 08B10 06C05 06B05 06C20 08Axx 08Bxx PDF BibTeX XML Cite \textit{R. N. McKenzie} et al., Algebras, lattices, varieties. Volume I. With an additional bibliography. Reprint of the 1987 original published by Wadsworth \& Brooks/Cole Advanced Books \& Software. Providence, RI: AMS Chelsea Publishing (2018; Zbl 1392.08001) Full Text: DOI OpenURL
Abdalla, Abdurahman Masoud; Janelidze, Zurab An order-theoretic perspective on categorial closure operators. (English) Zbl 1406.18001 Quaest. Math. 41, No. 4, 529-539 (2018). Reviewer: Marco Benini (Buccinasco) MSC: 18A32 06A15 18B35 06C05 PDF BibTeX XML Cite \textit{A. M. Abdalla} and \textit{Z. Janelidze}, Quaest. Math. 41, No. 4, 529--539 (2018; Zbl 1406.18001) Full Text: DOI OpenURL
Gein, A. G.; Shushpanov, M. P. Free 3-generated lattices with two semi-normal generators. (English) Zbl 1418.06004 Order 35, No. 2, 247-252 (2018). Reviewer: Yuri Movsisyan (Yerevan) MSC: 06B25 06B05 06C05 PDF BibTeX XML Cite \textit{A. G. Gein} and \textit{M. P. Shushpanov}, Order 35, No. 2, 247--252 (2018; Zbl 1418.06004) Full Text: DOI OpenURL
Molkhasi, A. On strongly algebraically closed orthomodular lattices. (English) Zbl 1399.06022 Southeast Asian Bull. Math. 42, No. 1, 83-88 (2018). MSC: 06C15 06C05 PDF BibTeX XML Cite \textit{A. Molkhasi}, Southeast Asian Bull. Math. 42, No. 1, 83--88 (2018; Zbl 1399.06022) OpenURL
Popovich, Alexander L. Finite nilsemigroups with modular congruence lattices. (English) Zbl 1446.20077 Ural Math. J. 3, No. 1, 52-67 (2017). MSC: 20M10 08A30 06C05 PDF BibTeX XML Cite \textit{A. L. Popovich}, Ural Math. J. 3, No. 1, 52--67 (2017; Zbl 1446.20077) Full Text: DOI MNR OpenURL
Shushpanov, Mikhaĭl Pavlovich On the embedding of the free lattice of rank 3 in the lattice freely generated by three completely right modular elements. (English) Zbl 1386.06006 Sib. Èlektron. Mat. Izv. 14, 1215-1219 (2017). MSC: 06B25 06C05 PDF BibTeX XML Cite \textit{M. P. Shushpanov}, Sib. Èlektron. Mat. Izv. 14, 1215--1219 (2017; Zbl 1386.06006) Full Text: DOI OpenURL
Nebiyev, Celil; Ökten, Hasan Hüseyin \( \beta_* \) relation on lattices. (English) Zbl 1399.06018 Miskolc Math. Notes 18, No. 2, 993-999 (2017). MSC: 06C05 PDF BibTeX XML Cite \textit{C. Nebiyev} and \textit{H. H. Ökten}, Miskolc Math. Notes 18, No. 2, 993--999 (2017; Zbl 1399.06018) Full Text: DOI OpenURL
Popovich, Alexander L.; Jones, Peter R. On congruence lattices of nilsemigroups. (English) Zbl 1422.20029 Semigroup Forum 95, No. 2, 314-320 (2017). MSC: 20M10 08A30 06D05 06C05 PDF BibTeX XML Cite \textit{A. L. Popovich} and \textit{P. R. Jones}, Semigroup Forum 95, No. 2, 314--320 (2017; Zbl 1422.20029) Full Text: DOI Link OpenURL
Penttila, Tim The three-cross theorem and the six-cross theorem of Pálfy and Szabó. (English) Zbl 1420.06014 Algebra Univers. 78, No. 4, 431-436 (2017). MSC: 06C05 51A05 PDF BibTeX XML Cite \textit{T. Penttila}, Algebra Univers. 78, No. 4, 431--436 (2017; Zbl 1420.06014) Full Text: DOI OpenURL
Shushpanov, Mikhail P. On 3-generated lattices with a completely modular element among generators. (English) Zbl 1420.06013 Algebra Univers. 78, No. 3, 377-387 (2017). MSC: 06B25 06B05 06C05 PDF BibTeX XML Cite \textit{M. P. Shushpanov}, Algebra Univers. 78, No. 3, 377--387 (2017; Zbl 1420.06013) Full Text: DOI OpenURL
Czédli, Gábor Complete congruence lattices of two related modular lattices. (English) Zbl 1420.06009 Algebra Univers. 78, No. 3, 251-289 (2017). MSC: 06B10 06B23 06C05 PDF BibTeX XML Cite \textit{G. Czédli}, Algebra Univers. 78, No. 3, 251--289 (2017; Zbl 1420.06009) Full Text: DOI OpenURL
Yu, Bin; Li, Qingguo Rough soft set theory applied to lattices and its applications. (English) Zbl 1376.06016 J. Intell. Fuzzy Syst. 32, No. 6, 3867-3878 (2017). MSC: 06D72 06D75 06C05 90B50 PDF BibTeX XML Cite \textit{B. Yu} and \textit{Q. Li}, J. Intell. Fuzzy Syst. 32, No. 6, 3867--3878 (2017; Zbl 1376.06016) Full Text: DOI OpenURL
Gein, A. G.; Shushpanov, Mikhail P. Modularity and distributivity of 3-generated lattices with special elements among generators. (English. Russian original) Zbl 1377.06004 Algebra Logic 56, No. 1, 1-12 (2017); translation from Algebra Logika 56, No. 1, 3-19 (2017). Reviewer: Christian Herrmann (Darmstadt) MSC: 06C05 06D05 06B25 PDF BibTeX XML Cite \textit{A. G. Gein} and \textit{M. P. Shushpanov}, Algebra Logic 56, No. 1, 1--12 (2017; Zbl 1377.06004); translation from Algebra Logika 56, No. 1, 3--19 (2017) Full Text: DOI OpenURL
Matsumoto, Diogo Kendy A characterization of modular law and distributive law of lattices by the Yang-Baxter maps. (English) Zbl 1378.06009 Japan J. Ind. Appl. Math. 34, No. 2, 335-341 (2017). MSC: 06D05 06C05 16T25 PDF BibTeX XML Cite \textit{D. K. Matsumoto}, Japan J. Ind. Appl. Math. 34, No. 2, 335--341 (2017; Zbl 1378.06009) Full Text: DOI OpenURL
Nimbhorkar, Shriram K.; Shroff, Rupal C. Goldie extending elements in modular lattices. (English) Zbl 1424.06028 Math. Bohem. 142, No. 2, 163-180 (2017). MSC: 06C05 PDF BibTeX XML Cite \textit{S. K. Nimbhorkar} and \textit{R. C. Shroff}, Math. Bohem. 142, No. 2, 163--180 (2017; Zbl 1424.06028) Full Text: DOI OpenURL
Albu, Toma; Iosif, Mihai Modular \(C_{11}\) lattices and lattice preradicals. (English) Zbl 1429.06008 J. Algebra Appl. 16, No. 6, Article ID 1750116, 19 p. (2017). MSC: 06C05 06B35 16S90 18E10 PDF BibTeX XML Cite \textit{T. Albu} and \textit{M. Iosif}, J. Algebra Appl. 16, No. 6, Article ID 1750116, 19 p. (2017; Zbl 1429.06008) Full Text: DOI OpenURL
Chateauneuf, Alain; Vergopoulos, Vassili; Zhang, Jianbo Infinite supermodularity and preferences. (English) Zbl 1404.91075 Econ. Theory 63, No. 1, 99-109 (2017). MSC: 91B08 06C05 PDF BibTeX XML Cite \textit{A. Chateauneuf} et al., Econ. Theory 63, No. 1, 99--109 (2017; Zbl 1404.91075) Full Text: DOI Link OpenURL
Staruch, Bogdan; Staruch, Bożena Decomposition of congruence modular algebras into atomic, atomless locally uniform and anti-uniform parts. (English) Zbl 1423.06026 Bull. Sect. Log., Univ. Łódź, Dep. Log. 45, No. 3-4, 199-211 (2016). MSC: 06C05 06B05 08A30 08B10 08B26 PDF BibTeX XML Cite \textit{B. Staruch} and \textit{B. Staruch}, Bull. Sect. Log., Univ. Łódź, Dep. Log. 45, No. 3--4, 199--211 (2016; Zbl 1423.06026) Full Text: DOI OpenURL
Łazarz, Marcin Characterization of Birkhoff’s conditions by means of cover-preserving and partially cover-preserving sublattices. (English) Zbl 1423.06024 Bull. Sect. Log., Univ. Łódź, Dep. Log. 45, No. 3-4, 185-197 (2016). MSC: 06C05 06B05 06B35 PDF BibTeX XML Cite \textit{M. Łazarz}, Bull. Sect. Log., Univ. Łódź, Dep. Log. 45, No. 3--4, 185--197 (2016; Zbl 1423.06024) Full Text: DOI OpenURL
Zhang, Hai-Feng; Zhou, Meng; Zhang, Guang-Jun Research on the characteristic of the five-element sub-lattice. (English) Zbl 1368.06003 Cao, Bing-Yuan (ed.) et al., International conference on oriental thinking and fuzzy logic. Celebration of the 50th anniversary in the era of complex systems and big data, Dalian, China, August 17–20, 2015. Cham: Springer (ISBN 978-3-319-30873-9/pbk; 978-3-319-30874-6/ebook). Advances in Intelligent Systems and Computing 443, 633-638 (2016). MSC: 06D05 06C05 06B05 PDF BibTeX XML Cite \textit{H.-F. Zhang} et al., Adv. Intell. Syst. Comput. 443, 633--638 (2016; Zbl 1368.06003) Full Text: DOI OpenURL
Rezapour, Shahram; Sami, Samaneh Some properties of isotone and joinitive multiderivations on lattices. (English) Zbl 1474.06017 Filomat 30, No. 10, 2743-2748 (2016). MSC: 06B05 06B10 06C05 PDF BibTeX XML Cite \textit{S. Rezapour} and \textit{S. Sami}, Filomat 30, No. 10, 2743--2748 (2016; Zbl 1474.06017) Full Text: DOI OpenURL
Romeo, P. G.; Akhila, R. Biorder ideals and regular rings. (English) Zbl 1360.16009 Rizvi, Syed Tariq (ed.) et al., Algebra and its applications. ICAA, Aligarh, India, December 15–17, 2014. Proceedings of the conference. Singapore: Springer (ISBN 978-981-10-1650-9/hbk; 978-981-10-1651-6/ebook). Springer Proceedings in Mathematics & Statistics 174, 265-273 (2016). MSC: 16E50 16D25 06C05 06C20 PDF BibTeX XML Cite \textit{P. G. Romeo} and \textit{R. Akhila}, Springer Proc. Math. Stat. 174, 265--273 (2016; Zbl 1360.16009) Full Text: DOI OpenURL
Herrmann, Christian; Tsukamoto, Yasuyuki; Ziegler, Martin On the consistency problem for modular lattices and related structures. (English) Zbl 1373.06006 Int. J. Algebra Comput. 26, No. 8, 1573-1595 (2016). Reviewer: Jānis Cīrulis (Riga) MSC: 06C05 08A50 03B25 03G15 15A75 16Z05 PDF BibTeX XML Cite \textit{C. Herrmann} et al., Int. J. Algebra Comput. 26, No. 8, 1573--1595 (2016; Zbl 1373.06006) Full Text: DOI arXiv OpenURL
Łazarz, Marcin; Siemieńczuk, Krzysztof Modularity for upper continuous and strongly atomic lattices. (English) Zbl 1370.06003 Algebra Univers. 76, No. 4, 493-495 (2016). Reviewer: Marcel Wild (Stellenbosch) MSC: 06C05 06B05 PDF BibTeX XML Cite \textit{M. Łazarz} and \textit{K. Siemieńczuk}, Algebra Univers. 76, No. 4, 493--495 (2016; Zbl 1370.06003) Full Text: DOI OpenURL
Albu, Toma; Iosif, Mihai New results on \(C_{11}\) and \(C_{12}\) lattices with applications to Grothendieck categories and torsion theories. (English) Zbl 1358.06002 Front. Math. China 11, No. 4, 815-828 (2016). Reviewer: Fang Jie (Guangzhou) MSC: 06C05 06B35 16S90 18E15 PDF BibTeX XML Cite \textit{T. Albu} and \textit{M. Iosif}, Front. Math. China 11, No. 4, 815--828 (2016; Zbl 1358.06002) Full Text: DOI OpenURL
Ríos Montes, José; Zaldívar Corichi, Angel Dimension and decomposition in modular upper-continuous lattices. (English) Zbl 1358.06003 Algebra Univers. 76, No. 1, 33-51 (2016). Reviewer: Grigore Călugăreanu (Cluj-Napoca) MSC: 06C05 06B23 16P20 16S90 18E40 PDF BibTeX XML Cite \textit{J. Ríos Montes} and \textit{A. Zaldívar Corichi}, Algebra Univers. 76, No. 1, 33--51 (2016; Zbl 1358.06003) Full Text: DOI arXiv OpenURL
Herrmann, Christian Homogeneous modular lattices are distributive. (English) Zbl 1377.06005 Order 33, No. 2, 359-363 (2016). Reviewer: Martin Weese (Potsdam) MSC: 06C05 03G10 06D05 PDF BibTeX XML Cite \textit{C. Herrmann}, Order 33, No. 2, 359--363 (2016; Zbl 1377.06005) Full Text: DOI OpenURL
Shewale, R. S.; Kharat, Vilas Forbidden configurations for distributive, modular and semidistributive posets. (English) Zbl 1359.06002 Discrete Math. 339, No. 12, 3005-3016 (2016). Reviewer: David B. Penman (Colchester) MSC: 06A07 06C05 06D05 PDF BibTeX XML Cite \textit{R. S. Shewale} and \textit{V. Kharat}, Discrete Math. 339, No. 12, 3005--3016 (2016; Zbl 1359.06002) Full Text: DOI OpenURL
Gein, A. G. Finitely generated lattices with \(M\)-standard elements among generators. (English. Russian original) Zbl 1341.06009 Russ. Math. 60, No. 3, 14-17 (2016); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2016, No. 3, 18-22 (2016). MSC: 06B25 06C05 06B05 PDF BibTeX XML Cite \textit{A. G. Gein}, Russ. Math. 60, No. 3, 14--17 (2016; Zbl 1341.06009); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2016, No. 3, 18--22 (2016) Full Text: DOI OpenURL
Grätzer, George The congruences of a finite lattice. A “proof-by-picture” approach. 2nd edition. (English) Zbl 1348.06001 Basel: Birkhäuser/Springer (ISBN 978-3-319-38796-3/hbk; 978-3-319-38798-7/ebook). xxxiv, 346 p. (2016). MSC: 06-02 06B10 06D05 06C05 06C10 PDF BibTeX XML Cite \textit{G. Grätzer}, The congruences of a finite lattice. A ``proof-by-picture'' approach. 2nd edition. Basel: Birkhäuser/Springer (2016; Zbl 1348.06001) Full Text: DOI OpenURL
Albu, Toma; Iosif, Mihai; Tercan, Adnan The conditions \((C_{i})\) in modular lattices, and applications. (English) Zbl 1367.06002 J. Algebra Appl. 15, No. 1, Article ID 1650001, 19 p. (2016). Reviewer: Christian Herrmann (Darmstadt) MSC: 06C05 06B35 16D70 16S90 18E15 PDF BibTeX XML Cite \textit{T. Albu} et al., J. Algebra Appl. 15, No. 1, Article ID 1650001, 19 p. (2016; Zbl 1367.06002) Full Text: DOI OpenURL
Vourdas, A. Möbius operators and non-additive quantum probabilities in the Birkhoff-von Neumann lattice. (English) Zbl 1331.60009 J. Geom. Phys. 101, 38-51 (2016). MSC: 60A05 06C05 PDF BibTeX XML Cite \textit{A. Vourdas}, J. Geom. Phys. 101, 38--51 (2016; Zbl 1331.60009) Full Text: DOI arXiv OpenURL
Albu, Toma; Iosif, Mihai Lattice preradicals versus module preradicals. (English) Zbl 1389.06024 Ann. Univ. Buchar., Math. Ser. 6(64), No. 1, 19-34 (2015). MSC: 06C05 18B35 PDF BibTeX XML Cite \textit{T. Albu} and \textit{M. Iosif}, Ann. Univ. Buchar., Math. Ser. 6(64), No. 1, 19--34 (2015; Zbl 1389.06024) OpenURL
He, Pengfei; Yang, Yongwei On \(TL\)-fuzzy ideals in lattices. (English) Zbl 1349.06020 J. Math., Wuhan Univ. 35, No. 6, 1341-1352 (2015). MSC: 06C05 06B10 PDF BibTeX XML Cite \textit{P. He} and \textit{Y. Yang}, J. Math., Wuhan Univ. 35, No. 6, 1341--1352 (2015; Zbl 1349.06020) OpenURL
Bayrak, Dilek; Yamak, Sultan A note on the lattice of \(TL\)-submodules of a module. (English) Zbl 1334.13010 Ann. Fuzzy Math. Inform. 10, No. 2, 323-330 (2015). MSC: 13C99 06C05 PDF BibTeX XML Cite \textit{D. Bayrak} and \textit{S. Yamak}, Ann. Fuzzy Math. Inform. 10, No. 2, 323--330 (2015; Zbl 1334.13010) Full Text: Link OpenURL
Shushpanov, M. P. Lattices generated by modular elements. (English. Russian original) Zbl 1336.06004 Russ. Math. 59, No. 12, 73-75 (2015); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2015, No. 12, 84-86 (2015). MSC: 06B05 06C05 PDF BibTeX XML Cite \textit{M. P. Shushpanov}, Russ. Math. 59, No. 12, 73--75 (2015; Zbl 1336.06004); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2015, No. 12, 84--86 (2015) Full Text: DOI OpenURL
Nimbhorkar, S. K.; Shroff, Rupal C. Generalized extending ideals in modular lattices. (English) Zbl 1351.06004 J. Indian Math. Soc., New Ser. 82, No. 3-4, 127-146 (2015). Reviewer: Marcel Wild (Stellenbosch) MSC: 06B10 06C05 PDF BibTeX XML Cite \textit{S. K. Nimbhorkar} and \textit{R. C. Shroff}, J. Indian Math. Soc., New Ser. 82, No. 3--4, 127--146 (2015; Zbl 1351.06004) OpenURL
Romeo, P. G. Biordered sets and regular rings. (English) Zbl 1329.16009 Romeo, P.G. (ed.) et al., Semigroups, algebras and operator theory. Selected papers of the conference, ICSAOT-2014, Kochi, India, February 26–28, 2014. New Delhi: Springer (ISBN 978-81-322-2487-7/hbk; 978-81-322-2488-4/ebook). Springer Proceedings in Mathematics & Statistics 142, 81-87 (2015). MSC: 16E50 16D25 06C05 06C20 PDF BibTeX XML Cite \textit{P. G. Romeo}, Springer Proc. Math. Stat. 142, 81--87 (2015; Zbl 1329.16009) Full Text: DOI OpenURL
Geĭn, A. G.; Shushpanov, M. P. Sufficient conditions for the modularity of the lattice generated by elements with properties of modular type. (English. Russian original) Zbl 1338.06007 Sib. Math. J. 56, No. 4, 631-636 (2015); translation from Sib. Mat. Zh. 56, No. 4, 798-804 (2015). Reviewer: Marcel Wild (Stellenbosch) MSC: 06C05 06B05 06B25 06C10 PDF BibTeX XML Cite \textit{A. G. Geĭn} and \textit{M. P. Shushpanov}, Sib. Math. J. 56, No. 4, 631--636 (2015; Zbl 1338.06007); translation from Sib. Mat. Zh. 56, No. 4, 798--804 (2015) Full Text: DOI OpenURL
Albu, Toma; Iosif, Mihai Lattice preradicals with applications to Grothendieck categories and torsion theories. (English) Zbl 1327.06009 J. Algebra 444, 339-366 (2015). Reviewer: Stefan Veldsman (Port Elizabeth) MSC: 06C05 06B23 06B35 16S90 18E15 PDF BibTeX XML Cite \textit{T. Albu} and \textit{M. Iosif}, J. Algebra 444, 339--366 (2015; Zbl 1327.06009) Full Text: DOI OpenURL
Albu, Toma Chain conditions in modular lattices with applications to Grothendieck categories and torsion theories. (English) Zbl 1386.06001 Monograph Series of the Parana’s Mathematical Society 1. Maringa: Sociedade Paranaense de Matemática. xi, 122 p. (2015). Reviewer: Ali Madanshekaf (Semnan) MSC: 06-02 06C05 06B35 18B35 18E15 18E40 16P20 PDF BibTeX XML Cite \textit{T. Albu}, Chain conditions in modular lattices with applications to Grothendieck categories and torsion theories. Maringa: Sociedade Paranaense de Matemática (2015; Zbl 1386.06001) OpenURL
Jun, Young Bae; Aşci, Mustafa; Keçılıoğlu, Osman Symmetric \((f, g)\) bi-derivations of lattices. (English) Zbl 1321.06005 Util. Math. 96, 179-189 (2015). MSC: 06B05 06C05 06D05 PDF BibTeX XML Cite \textit{Y. B. Jun} et al., Util. Math. 96, 179--189 (2015; Zbl 1321.06005) OpenURL
Darani, Ahmad Yousefian; Mostafanasab, Hojjat Co-2-absorbing preradicals and submodules. (English) Zbl 1326.16015 J. Algebra Appl. 14, No. 7, Article ID 1550113, 23 p. (2015). Reviewer: Halina France-Jackson (Port Elizabeth) MSC: 16N80 16S90 16D10 06C05 16N20 PDF BibTeX XML Cite \textit{A. Y. Darani} and \textit{H. Mostafanasab}, J. Algebra Appl. 14, No. 7, Article ID 1550113, 23 p. (2015; Zbl 1326.16015) Full Text: DOI arXiv OpenURL
Nimbhorkar, Shriram K.; Shroff, Rupal C. Ojective ideals in modular lattices. (English) Zbl 1338.06004 Czech. Math. J. 65, No. 1, 161-178 (2015). Reviewer: Yuri Movsisyan (Yerevan) MSC: 06B10 06C05 16D50 06B05 PDF BibTeX XML Cite \textit{S. K. Nimbhorkar} and \textit{R. C. Shroff}, Czech. Math. J. 65, No. 1, 161--178 (2015; Zbl 1338.06004) Full Text: DOI Link OpenURL
Darani, Ahmad Yousefian; Mostafanasab, Hojjat On 2-absorbing preradicals. (English) Zbl 1316.16015 J. Algebra Appl. 14, No. 2, Article ID 1550017, 22 p. (2015). Reviewer: Halina France-Jackson (Port Elizabeth) MSC: 16N80 16S90 16D10 06C05 16N20 PDF BibTeX XML Cite \textit{A. Y. Darani} and \textit{H. Mostafanasab}, J. Algebra Appl. 14, No. 2, Article ID 1550017, 22 p. (2015; Zbl 1316.16015) Full Text: DOI arXiv OpenURL
Loeb, Iris From mereology to Boolean algebra: the role of regular open sets in Alfred Tarski’s work. (English) Zbl 1417.03019 Mulligan, Kevin (ed.) et al., The history and philosophy of Polish logic. Essays in honour of Jan Woleński. New York, NY: Palgrave Macmillan. Hist. Anal. Philos., 259-277 (2014). MSC: 03-03 03B30 03A05 06C05 01A60 PDF BibTeX XML Cite \textit{I. Loeb}, in: The history and philosophy of Polish logic. Essays in honour of Jan Woleński. New York, NY: Palgrave Macmillan. 259--277 (2014; Zbl 1417.03019) OpenURL
Albu, Toma; Iosif, Mihai On socle and radical of modular lattices. (English) Zbl 1389.06023 Ann. Univ. Buchar., Math. Ser. 5(63), No. 2, 187-194 (2014). MSC: 06C05 PDF BibTeX XML Cite \textit{T. Albu} and \textit{M. Iosif}, Ann. Univ. Buchar., Math. Ser. 5(63), No. 2, 187--194 (2014; Zbl 1389.06023) OpenURL
Gein, A. G.; Shushpanov, M. P. Finitely generated lattices with completely modular elements among generators. (English. Russian original) Zbl 1314.06007 Algebra Logic 52, No. 6, 435-441 (2014); translation from Algebra Logika 52, No. 6, 657-666 (2013). MSC: 06B25 06C05 06B05 PDF BibTeX XML Cite \textit{A. G. Gein} and \textit{M. P. Shushpanov}, Algebra Logic 52, No. 6, 435--441 (2014; Zbl 1314.06007); translation from Algebra Logika 52, No. 6, 657--666 (2013) Full Text: DOI OpenURL
Bayrak, Dilek; Yamak, Sultan The lattice of generalized normal \(L\)-subgroups. (English) Zbl 1305.20075 J. Intell. Fuzzy Syst. 27, No. 3, 1143-1152 (2014). MSC: 20N25 20E15 06C05 06B15 PDF BibTeX XML Cite \textit{D. Bayrak} and \textit{S. Yamak}, J. Intell. Fuzzy Syst. 27, No. 3, 1143--1152 (2014; Zbl 1305.20075) Full Text: DOI OpenURL
Meena, K.; Thomas, K. V. Interval-valued intuitionistic fuzzy ideals of a ring. (English) Zbl 1305.16045 Adv. Fuzzy Sets Syst. 17, No. 1, 49-82 (2014). MSC: 16Y99 16D25 06C05 PDF BibTeX XML Cite \textit{K. Meena} and \textit{K. V. Thomas}, Adv. Fuzzy Sets Syst. 17, No. 1, 49--82 (2014; Zbl 1305.16045) Full Text: Link OpenURL
Herrmann, Christian On the coordinatization of primary Arguesian lattices of low geometric dimension. (English) Zbl 1314.06009 Beitr. Algebra Geom. 55, No. 2, 649-668 (2014). Reviewer: Horst Szambien (Garbsen) MSC: 06C05 16P20 20D30 20K01 PDF BibTeX XML Cite \textit{C. Herrmann}, Beitr. Algebra Geom. 55, No. 2, 649--668 (2014; Zbl 1314.06009) Full Text: DOI OpenURL
Shewale, R. S.; Kharat, V. S. On modular pairs in posets. (English) Zbl 1308.06001 Asian-Eur. J. Math. 7, No. 3, Article ID 1450044, 30 p. (2014). Reviewer: Ivan Chajda (Přerov) MSC: 06A06 06A11 06C05 PDF BibTeX XML Cite \textit{R. S. Shewale} and \textit{V. S. Kharat}, Asian-Eur. J. Math. 7, No. 3, Article ID 1450044, 30 p. (2014; Zbl 1308.06001) Full Text: DOI OpenURL
Kasjan, Stanisław; Pastuszak, Grzegorz On the existence of super-decomposable pure-injective modules over strongly simply connected algebras of non-polynomial growth. (English) Zbl 1322.16009 Colloq. Math. 136, No. 2, 179-220 (2014). Reviewer: Nguyen Viet Dung (Zanesville) MSC: 16G60 06C05 16D50 03C57 16G20 03C60 PDF BibTeX XML Cite \textit{S. Kasjan} and \textit{G. Pastuszak}, Colloq. Math. 136, No. 2, 179--220 (2014; Zbl 1322.16009) Full Text: DOI OpenURL
Pinus, A. G. Hamiltonian closure on universal algebras. (English. Russian original) Zbl 1304.08002 Sib. Math. J. 55, No. 3, 498-502 (2014); translation from Sib. Mat. Zh. 55, No. 3, 610-616 (2014). Reviewer: Yuri Movsisyan (Yerevan) MSC: 08A30 03C05 06A15 06B23 06B10 06C05 PDF BibTeX XML Cite \textit{A. G. Pinus}, Sib. Math. J. 55, No. 3, 498--502 (2014; Zbl 1304.08002); translation from Sib. Mat. Zh. 55, No. 3, 610--616 (2014) Full Text: DOI OpenURL
Vimala, J. Neutral operators and triple representation. (English) Zbl 1314.06004 Int. J. Pure Appl. Math. 91, No. 4, 477-481 (2014). MSC: 06A12 06B15 06C05 PDF BibTeX XML Cite \textit{J. Vimala}, Int. J. Pure Appl. Math. 91, No. 4, 477--481 (2014; Zbl 1314.06004) Full Text: DOI Link OpenURL
Călugăreanu, Grigore; Conţiu, Carolina Erratum to “On type 1 representable lattices of dimension at most 4”. (English) Zbl 1302.06008 Algebra Univers. 71, No. 1, 69-70 (2014). MSC: 06B15 06C05 PDF BibTeX XML Cite \textit{G. Călugăreanu} and \textit{C. Conţiu}, Algebra Univers. 71, No. 1, 69--70 (2014; Zbl 1302.06008) Full Text: DOI OpenURL
Grätzer, George (ed.); Wehrung, Friedrich (ed.) Lattice theory: special topics and applications. Volume 1. (English) Zbl 1296.06001 Cham: Birkhäuser/Springer (ISBN 978-3-319-06412-3/hbk; 978-3-319-06413-0/ebook). xiii, 468 p. (2014). MSC: 06-06 06B10 06B25 06B35 06C05 06C20 06D22 00B15 PDF BibTeX XML Cite \textit{G. Grätzer} (ed.) and \textit{F. Wehrung} (ed.), Lattice theory: special topics and applications. Volume 1. Cham: Birkhäuser/Springer (2014; Zbl 1296.06001) Full Text: DOI OpenURL