Lattice-based and topological representations of binary relations with an application to music. (English) Zbl 1328.00100

Summary: Formal concept analysis associates a lattice of formal concepts to a binary relation. The structure of the relation can then be described in terms of lattice theory. On the other hand \(Q\)-analysis associates a simplicial complex to a binary relation and studies its properties using topological methods. This paper investigates which mathematical invariants studied in one approach can be captured in the other. Our main result is that all homotopy invariant properties of the simplicial complex can be recovered from the structure of the concept lattice. This not only clarifies the relationships between two frameworks widely used in symbolic data analysis but also offers an effective new method to establish homotopy equivalence in the context of \(Q\)-analysis. As a musical application, we will investigate Olivier Messiaen’s modes of limited transposition. We will use our theoretical result to show that the simplicial complex associated to a maximal mode with \(m\) transpositions is homotopy equivalent to the \((m-2)\)-dimensional sphere.


00A65 Mathematics and music
05E45 Combinatorial aspects of simplicial complexes
06A15 Galois correspondences, closure operators (in relation to ordered sets)
68R05 Combinatorics in computer science


Full Text: DOI HAL


[1] Wille, R.: Restructuring lattice theory: An approach based on the hierarchy of concepts. In: Rival, I. (ed.) Ordered sets: proceedings of the NATO Advanced Study Institute held at Banff, Canada, August 28 to September 12, 1981. D. Reidel Pub. Co. (1982)
[2] Barbut, M., Monjardet, B.: Ordre et Classification: Algèbre et Combinatoire. Hachette (1970) · Zbl 0267.06001
[3] Dowker, CH, Homology groups of relations, Ann. Math 2nd Series, 56, 84-95, (1952) · Zbl 0046.40402
[4] Atkin, RH, From cohomology in physics to q-connectivity in social science, Int. J. Man Mach. Stud., 4, 139-167, (1972)
[5] Casti, J.L.: Connectivity, Complexity, and Catastrophe in Large-Scale Systems. Wiley, New York (1979) · Zbl 0493.93003
[6] Freeman, LC, Q-analysis and the structure of friendship networks, Int. J. Man Mach. Stud., 12, 367-378, (1980)
[7] Johnson, J.: Transport Planning and Control, Chapter The dynamics of Large Complex Road Systems. Oxford University Press, pp. 165-186 (1991)
[8] Duckstein, L; Nobe, SA, Q-analysis for modeling and decision making, Eur. J. Oper. Res., 103, 411-425, (1997) · Zbl 0926.90048
[9] Barcelo, H; Kramer, X; Laubenbacher, R; Weaver, C, Foundations of a connectivity theory for simplicial complexes, Adv. Appl. Math., 26, 97-128, (2001) · Zbl 0984.57014
[10] Kaburlasos, VG, Special issue on information engineering applications based on lattices, Inf. Sci., 181, 1771-1773, (2011)
[11] Catanzaro, MJ, Generalized tonnetze, J. Math. Music, 5, 117-139, (2011) · Zbl 1226.00017
[12] Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer-Verlag, Berlin and Heidelberg (1999) · Zbl 0909.06001
[13] Atkin, R.H.: Q-analysis. A hard language for the soft sciences. Futures, 492-499 (1978) · Zbl 0870.05005
[14] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[15] Munkres, J.R.: Elements of Algebraic Topology. The Benjamin/Cummings Publication Company, Menlo Park (1984) · Zbl 0673.55001
[16] Bigo, L., Giavitto, J.-L., Spicher, A.: Building topological spaces for musical objects. In: Mathematics and Computation in Music, volume 6726 of LNCS. Springer, Paris (2011) · Zbl 1335.00117
[17] Rehding, A.: Hugo Riemann and the Birth of Modern Musical Thought. Number 11 in New Perspectives in Music History and Criticism. Cambridge University Press (2003)
[18] Lewin, D.: Generalized musical intervals and transformations. Yale University Press (2007 reedition by Oxford University Press) (1987)
[19] Halsey, GD; Hewitt, E, Eine gruppentheoretische methode in der musiktheorie, Jahresbericht der Deutschen Mathematiker-Vereinigung, 80, 151-207, (1978) · Zbl 0392.05011
[20] Collins, N.: Enumeration of chord sequences. In: Sound and Music Computing. Aalborg University Copenhangen, Denmark (2012). SMC
[21] Reiner, D.L.: Enumeration in music theory. Am. Math. Mon., 51-54 (1985) · Zbl 0582.05005
[22] Fripertinger, H., Voitsberg, G.: Enumeration in musical theory. Institut für Elektronische Musik (IEM) (1992) · Zbl 0046.40402
[23] Fripertinger, H, Enumeration of mosaics, Discret. Math., 199, 49-60, (1999) · Zbl 0927.05001
[24] Fripertinger, H.: Enumeration and construction in music theory. In: Proceedings of the Diderot Forum on Mathematics and Music (Vienna), pp. 170-203 (1999)
[25] Mazzola, G., Muzzulini, D., Hofmann, G.R.: Geometrie der Töne: Elemente der Mathematischen Musiktheorie. Birkhäuser (1990)
[26] Mazzola, G., et al.: The topos of music. Birkhäuser, Basel (2002) · Zbl 1104.00003
[27] Tymoczko, D, The geometry of musical chords, Science, 313, 72-74, (2006) · Zbl 1226.00026
[28] Mazzola, G.: Gruppen und Kategorien in der Musik: Entwurf einer mathematischen Musiktheorie, volume 10 of Reasearch and Exposition in Mathematics. Heldermann (1985) · Zbl 0574.00016
[29] Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) Mathematics and Computation in Music, volume 7937 of Lecture Notes in Computer Science, pp 38-51. Springer, Berlin Heidelberg (2013) · Zbl 1270.00025
[30] Nestke, A.: Paradigmatic motivic analysis. In: Perspectives in Mathematical and Computational Music Theory, Osnabrück Series on Music and Computation, pp. 343-365 (2004) · Zbl 1114.00007
[31] Wille, R.: Musik und Mathematik: Salzburger Musikgespräch 1984 unter Vorsitz von Herbert von Karajan, chapter Musiktheorie und Mathematik, pp. 4-31. Springer (1985)
[32] Noll, T; Brand, M, Morphology of chords, Perspect. Math. Comput. Music Theory, 1, 366, (2004)
[33] Schlemmer, T., Andreatta, M.: Using formal concept analysis to represent chroma systems. In: Mathematics and Computation in Music, pp. 189-200. Springer (2013) · Zbl 1270.00034
[34] Forte, A.: The Structure of Atonal Music. Yale University Press (1973) · Zbl 1226.00026
[35] Lewin, D.: Forte’s interval vector, my interval function, and Regener’s common-note function. J. Music Theory, 194-237 (1977)
[36] Bresson, J., Agon, C., Assayag, G.: Openmusic: Visual programming environment for music composition, analysis and research. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 743-746. ACM (2011)
[37] Read, RC, Combinatorial problems in the theory of music, Discret. Math., 167, 543-551, (1997) · Zbl 0870.05005
[38] Broué, M.: Les tonalités musicales vues par un mathématicien. Le temps des savoirs (Revue de l’Institut Universitaire de France), pp. 37-78. Odile Jacob (2001)
[39] Schlemmer, T; Schmidt, SE, A formal concept analysis of harmonic forms and interval structures, Ann. Math. Artif. Intell., 59, 241-256, (2010) · Zbl 1213.00052
[40] Borchmann, D., Ganter, B.: Concept lattice orbifolds — first steps. In: Ferré, S., Rudolph, S. (eds.) Formal Concept Analysis: 7th International Conference, ICFCA 2009 Darmstadt, Germany, May 21-24, 2009 Proceedings. Springer Verlag, Berlin and Heidelberg (2009) · Zbl 1248.06001
[41] Fripertinger, H.: Remarks on rhythmical canons. In: Fripertinger, H., Reich, L. (eds.) Proceedings of the Colloquium on Mathematical Music Theory, volume 347 of Grazer Math. Ber. pp. 73-90. Graz, Austria (2004) · Zbl 1149.00012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.