×

Function spaces and fixed point properties: A Galois connection. (English) Zbl 0422.43002

MSC:

43A07 Means on groups, semigroups, etc.; amenable groups
22A20 Analysis on topological semigroups
54H25 Fixed-point and coincidence theorems (topological aspects)
06A15 Galois correspondences, closure operators (in relation to ordered sets)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Argabright, L.N.,Invariant means and fixed points;a sequel to Mitchell’s paper, Trans. Amer. Math. Soc. 130 (1968), 127–130. · Zbl 0179.21102
[2] Birkhoff, G.,Lattice Theory, Amer. Math. Soc. Coll. Publ. 25, New York, 1940. · Zbl 0063.00402
[3] Blyth, T.S. and M.F. Janowitz,Residuation Theory, Pergamon, Oxford, 1972.
[4] Dugundji, J.,Topology, Allyn and Bacon, Boston, 1966.
[5] Dunford, N. and J.T. Schwartz,Linear Operators I, Interscience, New York, 1958.
[6] Grossman, M.W.,A categorical approach to invariant means and fixed point properties, Semigroup Forum 5 (1972), 14–44. · Zbl 0259.43011
[7] Herrlich, H. and G.E. Strecker,Category Theory, Allyn and Bacon, Boston, 1973. · Zbl 0265.18001
[8] Hofmann, K.H. and A. Stralka,The algebraic theory of compact Lawson semilattices.Applications of Galois connections to compact semilattices, Diss. Math. 137, Warszawa, 1976. · Zbl 0359.06016
[9] Jacobson, E.M.,Non-locally convex sets, and a characterization of the weakly almost periodic functions, Doctoral Dissertation, Temple University, Philadelphia, 1977.
[10] Jellett, F.,Homomorphisms and inverse limits of Choquet simplexes, Math. Z. 103 (1968), 219–226. · Zbl 0164.43303
[11] Junghenn, H.D.,Some general results on fixed points and invariant means, Semigroup Forum 11 (1975), 153–164. · Zbl 0332.43001
[12] Lau, A.T.,Invariant means on almost periodic functions and fixed point properties, Rocky Mountain J. Math. 3 (1973), 69–76. · Zbl 0279.43002
[13] Lau, A.T.,Actions of semitopological semigroups and extension properties, unpublished manuscript.
[14] Lau, A.T.,Invariant means on weakly almost periodic functions and fixed point properties, unpublished manuscript. · Zbl 0279.43002
[15] Lau, A.T.,Action of topological semigroups, invariant means, and fixed points, Studia Math. 43 (1972), 139–156. · Zbl 0232.43001
[16] Milnes, P.,Compactifications of semitopological semigroups, J. Austral. Math. Soc. 15 (1973), 488–503. · Zbl 0266.22002
[17] Mitchell, T.,Function algebras, means, and fixed points, Trans. Amer. Math. Soc. 130 (1968), 117–126. · Zbl 0179.21101
[18] Mitchell, T.,Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630–641. · Zbl 0219.22003
[19] Nöbeling, G.,Grundlagen Der Analytischen Topologie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.
[20] Ore, O.,Galois connexions, Trans. Amer. Math. Soc. 55 (1944), 493–513. · Zbl 0060.06204
[21] Phelps, R.R.,Lectures on Choquet’s Theorem, Van Nostrand, Princeton, 1966. · Zbl 0135.36203
[22] Rao, C.R.,Invariant means on spaces of continuous or measurable functions, Trans. Amer. Math. Soc. 114 (1965), 187–196 · Zbl 0139.30901
[23] Wong, J.C.S.,Topological semigroups and representations, Trans. Amer. Math. Soc. 200 (1974), 89–109. · Zbl 0297.22004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.