×

zbMATH — the first resource for mathematics

Directly finite algebras of pseudofunctions on locally compact groups. (English) Zbl 1405.22005
Summary: An algebra \(A\) is said to be directly finite if each left-invertible element in the (conditional) unitization of \(A\) is right invertible. We show that the reduced group \(\mathrm{C}^\ast\)-algebra of a unimodular group is directly finite, extending known results for the discrete case. We also investigate the corresponding problem for algebras of \(p\)-pseudofunctions, showing that these algebras are directly finite if \(G\) is amenable and unimodular, or unimodular with the Kunze-Stein property. An exposition is also given of how existing results from the literature imply that \(L^{1}(G)\) is not directly finite when \(G\) is the affine group of either the real or complex line.

MSC:
22D15 Group algebras of locally compact groups
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
46L05 General theory of \(C^*\)-algebras
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1017/CBO9780511574757
[2] Pedersen, C*-algebras and their automorphism groups (1979)
[3] DOI: 10.1017/S0013091500023087 · Zbl 0857.16029
[4] DOI: 10.1090/S0002-9904-1969-12234-2 · Zbl 0174.31204
[5] Herz, Trans. Am. Math. Soc. 154 pp 69– (1971)
[6] DOI: 10.1016/0001-8708(80)90004-3 · Zbl 0463.43003
[7] Dixmier, C*-algebras (1977)
[8] Leptin, Symposia Mathematica pp 267– (1977)
[9] Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann) (1969)
[10] DOI: 10.2307/2372876 · Zbl 0156.37104
[11] Diep, Methods of noncommutative geometry for group C*-algebras (2000) · Zbl 1020.46024
[12] DOI: 10.2307/2372552 · Zbl 0051.09101
[13] DOI: 10.1007/978-3-642-20656-6 · Zbl 1233.43001
[14] DOI: 10.5802/aif.473 · Zbl 0257.43007
[15] Cowling, Ann. Math. (Ser. 2) 107 pp 209– (1978) · Zbl 0363.22007
[16] DOI: 10.1007/s00020-010-1772-0 · Zbl 1220.47005
[17] DOI: 10.1007/978-3-642-65669-9
[18] DOI: 10.1017/S0013091500018241 · Zbl 0715.47004
[19] Z’ep, Funkcional. Anal. i Priložen. 9 pp 63– (1974)
[20] Wang, The C*-algebras of a class of solvable Lie groups (1989)
[21] DOI: 10.2140/pjm.1976.65.175
[22] DOI: 10.2140/pjm.1988.133.141 · Zbl 0646.43006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.