zbMATH — the first resource for mathematics

Weak and cyclic amenability for Fourier algebras of connected Lie groups. (English) Zbl 1298.43004
A commutative Banach algebra \(A\) is weakly amenable if there is no non-zero continuous derivation from \(A\) into any commutative Banach \(A\)-bimodule. B. E. Johnson showed in [J. Lond. Math. Soc., II. Ser. 50, No. 2, 361–374 (1994; Zbl 0829.43004)] that the Fourier algebra \(A(SO(3))\) of the rotation group \(SO(3)\) is not weakly amenable. Johnson’s construction was used by R. J. Plymen [“Fourier algebra of a compact Lie group”, arXiv:math/0104018] to show that \(A(G)\) is not weakly amenable for each non-abelian compact connected Lie group. This was extended by B. E. Forrest et al. [Indiana Univ. Math. J. 58, No. 3, 1379–1394 (2009; Zbl 1189.43004)] who showed that the Fourier algebra \(A(G)\) of a compact group \(G\) is weakly amenably if and only if the connected component of the identity in \(G\) is abelian. The paper under review considers non-compact groups. The authors show that \(A(G)\) is not weakly amenable in the case where \(G\) is the so-called real \(ax+b\) group. The approach is based on the orthogonality relations for the coefficient functions of the irreducible representations of that group. By combining the above mentioned result with some structure theory, the authors are able to prove that \(A(G)\) is not weakly amenable for each semisimple connected Lie group \(G\).

43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
43A22 Homomorphisms and multipliers of function spaces on groups, semigroups, etc.
22E15 General properties and structure of real Lie groups
PDF BibTeX Cite
Full Text: DOI arXiv
[1] Arsac, G., Sur l’espace de Banach engendré par LES coefficients d’une représentation unitaire, Publ. Dép. Math. (Lyon), 13, 1-101, (1976) · Zbl 0365.43005
[2] Bade, W. G.; Curtis, P. C.; Dales, H. G., Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. Lond. Math. Soc. (3), 55, 359-377, (1987) · Zbl 0634.46042
[3] Cheng, Y. H.; Forrest, B. E.; Spronk, N., On the subalgebra of a Fourier-Stieltjes algebra generated by pure positive definite functions, Monatsh. Math., 171, 305-314, (2013) · Zbl 1279.43007
[4] Duflo, M.; Moore, C. C., On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., 21, 209-243, (1976) · Zbl 0317.43013
[5] Eymard, P., L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92, 181-236, (1964) · Zbl 0169.46403
[6] Eymard, P.; Terp, M., La transformation de Fourier et son inverse sur le groupe des \(a x + b\) d’un corps local, (Analyse harmonique sur les groupes de Lie, Sém., II, Nancy-Strasbourg 1976-1978, Lecture Notes in Math., vol. 739, (1979), Springer Berlin), 207-248
[7] Folland, G. B., A course in abstract harmonic analysis, Stud. Adv. Math., (1995), CRC Press Boca Raton, FL · Zbl 0857.43001
[8] Forrest, B. E.; Runde, V., Amenability and weak amenability of the Fourier algebra, Math. Z., 250, 731-744, (2005) · Zbl 1080.22002
[9] Forrest, B. E.; Samei, E.; Spronk, N., Weak amenability of Fourier algebras on compact groups, Indiana Univ. Math. J., 58, 1379-1393, (2009) · Zbl 1189.43004
[10] Grønbæk, N., Weak and cyclic amenability for noncommutative Banach algebras, Proc. Edinb. Math. Soc. (2), 35, 315-328, (1992) · Zbl 0760.46043
[11] Hewitt, E.; Ross, K. A., Abstract harmonic analysis. vol. II: structure and analysis for compact groups. analysis on locally compact abelian groups, Grundlehren Math. Wiss., vol. 152, (1970), Springer New York · Zbl 0213.40103
[12] Hilgert, J.; Neeb, K. H., Structure and geometry of Lie groups, Springer Monogr. Math., (2012), Springer New York
[13] Howe, E., Transformus: even worse than predicted, (2014), VOX. Available at
[14] Johnson, B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., vol. 127, (1972), American Mathematical Society Providence, RI · Zbl 0246.46040
[15] Johnson, B. E., Non-amenability of the Fourier algebra of a compact group, J. Lond. Math. Soc. (2), 50, 361-374, (1994) · Zbl 0829.43004
[16] Khalil, I., Sur l’analyse harmonique du groupe affine de la droite, Studia Math., 51, 139-167, (1974) · Zbl 0294.43007
[17] Knapp, A. W., Lie groups beyond an introduction, Progr. Math., vol. 140, (1996), Birkhäuser Boston Inc. Boston, MA · Zbl 0862.22006
[18] Plymen, R., Fourier algebra of a compact Lie group, (2001), unpublished manuscript, see
[19] Spronk, N., Amenability properties of Fourier algebras and Fourier-Stieltjes algebras: a survey, (Banach Algebras 2009, Banach Center Publ., vol. 91, (2010), Polish Acad. Sci. Inst. Math. Warsaw), 365-383 · Zbl 1209.43004
[20] Zwarich, C., Von Neumann algebras for harmonic analysis, (2008), University of Waterloo, Master’s thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.