×

Analogical proportions. (English) Zbl 1490.68175

Summary: Analogy-making is at the core of human and artificial intelligence and creativity with applications to such diverse tasks as proving mathematical theorems and building mathematical theories, common sense reasoning, learning, language acquisition, and story telling. This paper introduces from first principles an abstract algebraic framework of analogical proportions of the form ‘\(a\) is to \(b\) what \(c\) is to \(d\)’ in the general setting of universal algebra. This enables us to compare mathematical objects possibly across different domains in a uniform way which is crucial for AI-systems. It turns out that our notion of analogical proportions has appealing mathematical properties. As we construct our model from first principles using only elementary concepts of universal algebra, and since our model questions some basic properties of analogical proportions presupposed in the literature, to convince the reader of the plausibility of our model we show that it can be naturally embedded into first-order logic via model-theoretic types and prove from that perspective that analogical proportions are compatible with structure-preserving mappings. This provides conceptual evidence for its applicability. In a broader sense, this paper is a first step towards a theory of analogical reasoning and learning systems with potential applications to fundamental AI-problems like common sense reasoning and computational learning and creativity.

MSC:

68T01 General topics in artificial intelligence
08A70 Applications of universal algebra in computer science
68T27 Logic in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Antić, C.: Boolean proportions. https://arxiv.org/pdf/2109.00388.pdf, submitted to Journal of Artificial Intelligence Research (2021)
[2] Antić, C.: Logic program proportions. https://arxiv.org/pdf/1809.09938.pdf, submitted to Theory and Practice of Logic Programming (2021)
[3] Antić, C.: Sequential composition of answer set programs. https://arxiv.org/pdf/2104.12156.pdf, submitted to Theory and Practice of Logic Programming (2021)
[4] Antić, C.: Sequential composition of propositional logic programs. https://arxiv.org/pdf/2009.05774.pdf, submitted to Annals of Mathematics and Artificial Intelligence (2021)
[5] Apt, K. R.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp 493-574. Elsevier, Amsterdam (1990) · Zbl 0900.68136
[6] Awodey, S., Category Theory, Oxford Logic Guides, vol. 52, 2nd edn (2010), New York: Oxford University Press, New York · Zbl 1194.18001
[7] Baader, F.; Nipkow, T., Term Rewriting and All That (1998), Cambridge UK: Cambridge University Press, Cambridge UK · Zbl 0948.68098 · doi:10.1017/CBO9781139172752
[8] Barbot, N.; Miclet, L.; Prade, H., Analogy between concepts, Artif. Intell., 275, 487-539 (2019) · Zbl 1478.68360 · doi:10.1016/j.artint.2019.06.008
[9] Boden, MA, Creativity and artificial intelligence, Artif. Intell., 103, 1-2, 347-356 (1998) · Zbl 0910.68161 · doi:10.1016/S0004-3702(98)00055-1
[10] Brewka, G.; Eiter, T.; Truszczynski, M., Answer set programming at a glance, Commun. ACM, 54, 12, 92-103 (2011) · doi:10.1145/2043174.2043195
[11] Burris, S., Sankappanavar, H.: A course in universal algebra. http://www.math.hawaii.edu/ ralph/Classes/619/univ-algebra.pdf (2000) · Zbl 0478.08001
[12] Chang, CC; Keisler, HJ, Model Theory (1973), Amsterdam: North-Holland, Amsterdam · Zbl 0276.02032
[13] Correa, W., Prade, H., Richard, G.: When intelligence is just a matter of copying. In: Raedt, L.D., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P. (eds.) ECAI 2012, Frontiers in Artificial Intelligence and Applications, vol. 242, pp 276-281 (2012) · Zbl 1327.68306
[14] Dastani, M.; Indurkhya, B.; Scha, R., Analogical projection in pattern perception, J. Exp. Theor. Artif. Intell., 15, 4, 489-511 (2003) · Zbl 1105.68413 · doi:10.1080/09528130310001626283
[15] Ebbinghaus, HD; Flum, J., Finite Model Theory, 2 edn. Springer Monographs in Mathematics (1999), Berlin/Heidelberg: Springer, Berlin/Heidelberg · Zbl 0932.03032
[16] Eiter, T., Ianni, G., Krennwallner, T. : Answer set programming: a primer. In: Reasoning Web. Semantic Technologies for Information Systems, volume 5689 of Lecture Notes in Computer Science, pp 40-110. Springer, Heidelberg (2009) · Zbl 1254.68248
[17] Falkenhainer, B.; Forbus, KD; Gentner, D., The structure-mapping engine: algorithm and examples, Artif. Intell., 41, 1, 1-63 (1989) · Zbl 0681.68103 · doi:10.1016/0004-3702(89)90077-5
[18] Gelfond, M.; Lifschitz, V., Classical negation in logic programs and disjunctive databases, N. Gener. Comput., 9, 3-4, 365-385 (1991) · Zbl 0735.68012 · doi:10.1007/BF03037169
[19] Gentner, D., Structure-mapping: a theoretical framework for analogy, Cognit. Sci., 7, 2, 155-170 (1983) · doi:10.1207/s15516709cog0702_3
[20] Gust, H.; Krumnack, U.; Kühnberger, KU; Schwering, A., Analogical reasoning: a core of cognition, Künstliche Intelligenz, 22, 1, 8-12 (2008)
[21] Hall, RP, Computational approaches to analogical reasoning: a comparative analysis, Artif. Intell., 39, 1, 39-120 (1989) · Zbl 0668.68097 · doi:10.1016/0004-3702(89)90003-9
[22] Hinman, PG, Fundamentals of Mathematical Logic (2005), Wellesley: A K Peters, Wellesley · Zbl 1081.03003
[23] Hofstadter, D.: Analogy as the core of cognition. In: Gentner, D., Holyoak, K. J., Kokinov, B. K. (eds.) The Analogical Mind: Perspectives from Cognitive Science, pp 499-538. MIT Press/Bradford Book, Cambridge (2001)
[24] Hofstadter, D., Mitchell, M.: The copycat project: a model of mental fluidity and analogy-making. In: Fluid Concepts and Creative Analogies. Computer Models of the Fundamental Mechanisms of Thought, Chap. 5, pp 205-267. Basic Books, New York (1995)
[25] Hofstadter, D.; Sander, E., Surfaces and Essences. Analogy as the Fuel and Fire of Thinking (2013), New York: Basic Books, New York
[26] Klein, S.: Culture, mysticism and social structure and the calculation of behavior. In: ECAI 1982, pp 141-146 (1982)
[27] Krieger, MH, Doing Mathematics: Convention, Subject, Calculation, Analogy (2003), New Jersey: World Scientific, New Jersey · Zbl 1145.00302 · doi:10.1142/5133
[28] Lepage, Y., De L’Analogie. Rendant Compte De La Commutation En Linguistique. Habilitation à Diriger Les Recherches (2003), Grenoble: Université Joseph Fourier, Grenoble
[29] Libkin, L., Elements of Finite Model Theory (2012), Berlin/Heidelberg: Springer, Berlin/Heidelberg · Zbl 1060.03002
[30] Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy logics settings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009, LNAI 5590, pp 638-650. Springer, Berlin/Heidelberg (2009) · Zbl 1245.03046
[31] Miclet, L.; Bayoudh, S.; Delhay, A., Analogical dissimilarity: definition, algorithms and two experiments in machine learning, J. Artif. Intell. Res., 32, 793-824 (2008) · Zbl 1183.68489 · doi:10.1613/jair.2519
[32] Navarrete, JA; Dartnell, P., Towards a category theory approach to analogy: analyzing re-representation and acquisition of numerical knowledge, Comput. Biol., 13, 8, 1-38 (2017)
[33] Pólya, G., Induction and Analogy in Mathematics, Mathematics and Plausible Reasoning, vol. 1 (1954), Princeton: Princeton University Press, Princeton · Zbl 0056.24101
[34] Prade, H., Richard, G.: Reasoning with logical proportions. In: KR 2010, pp 545-555. AAAI Press (2010)
[35] Prade, H., Richard, G.: A short introduction to computational trends in analogical reasoning. In: Prade, H., Richard, G. (eds.) Approaches to Analogical Reasoning: Current Trends, Studies in Computational Intelligence 548, pp 1-22. Springer, Berlin/Heidelberg (2014)
[36] Prade, H., Richard, G.: Analogical proportions and analogical reasoning—an introduction. In: Aha, D. W., Lieber, J. (eds.) ICCBR 2017, LNAI 10339, pp 16-32. Springer, Berlin (2017)
[37] Sowa, J. F., Majumdar, A. K.: Analogical reasoning. In: Ganter, B., Moor, A., Lex, W. (eds.) ICCS 2003, LNAI 2746, pp 16-36. Springer, Berlin/Heidelberg (2003) · Zbl 1274.68471
[38] Stroppa, N., Yvon, F.: Formal models of analogical proportions. Technical Report d008, Telecom ParisTech - École Nationale Supérieure de Télécommunications Télécom Paris (2006)
[39] Winston, PH, Learning and reasoning by analogy, Commun. ACM, 23, 12, 689-703 (1980) · doi:10.1145/359038.359042
[40] Wos, L., The problem of reasoning by analogy, J. Autom. Reason., 10, 3, 421-422 (1993) · Zbl 0783.68114 · doi:10.1007/BF00881800
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.