×

Half-spectral analysis of spatial-temporal data: the case study of Iranian daily wind speed data. (English) Zbl 1524.62471

Summary: In this paper, we first study the theory of the spatial-temporal half spectral modeling and describe some properties of recently proposed half spectral models. Next, we propose an estimation method for the estimation of spatial-temporal covariance functions in the half-spectral setting. To assess the performance of the proposed half-spectral models, we conduct two simulations, in which we compare the proposed fitting approach with respect to the other classical estimation methods. The proposed methods have great success in fitting parametric space-time covariance functions specifically for massive data sets. Finally, we apply the proposed methods for a real daily wind speed data in Iran.

MSC:

62M30 Inference from spatial processes
62P12 Applications of statistics to environmental and related topics

Software:

astsa
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bochner, S., Harmonic analysis and the theory of probability (1955), Berkeley, CA: University of California Press, Berkeley, CA · Zbl 0068.11702
[2] Chilès, J. P.; Delfner, P., Geostatistics: Modeling spatial uncertainty (2012), New York: Wiley · Zbl 1256.86007
[3] Cressie, N., Fitting variogram models by weighted least squares, Journal of the International Association for Mathematical Geology, 17, 5, 563-86 (1985) · doi:10.1007/BF01032109
[4] Cressie, N., Statistics for spatial data (1993), New York: John Willey & Sons, New York
[5] Cressie, N.; Huang, H. C., Classes of nonseparable, spatio-temporal stationary covariance functions, Journal of the American Statistical Association, 94, 448, 1330-40 (1999) · Zbl 0999.62073 · doi:10.1080/01621459.1999.10473885
[6] Cressie, N.; Wikle, C. K., Statistics for spatio-temporal data (2013), New York: John Wiley & Sons
[7] Fuentes, M., Approximate likelihood for large irregularly spaced spatial data, Journal of the American Statistical Association, 102, 477, 321-31 (2007) · Zbl 1284.62589 · doi:10.1198/016214506000000852
[8] Gneiting, T., Nonseparable stationary covariance functions for space-time data, Journal of the American Statistical Association, 97, 458, 590-600 (2002) · Zbl 1073.62593 · doi:10.1198/016214502760047113
[9] Gneiting, T.; Genton, M. G.; Guttorp, P., Geostatistical space-time models, stationarity, separability, and full symmetry, Monographs on Statistics and Applied Probability, 107, 151 (2006) · Zbl 1282.86019
[10] Guinness, J.; Hammerling, D., Compression and conditional emulation of climate model output, Journal of the American Statistical Association, 113, 521, 56-67 (2018) · Zbl 1398.68157 · doi:10.1080/01621459.2017.1395339
[11] Horrell, M. T.; Stein, M. L., Half-spectral space-time covariance models, Spatial Statistics, 19, 90-100 (2017) · doi:10.1016/j.spasta.2016.12.002
[12] Journel, A. G.; Huijbregts, C. J., Mining geostatistics (1978), , (Vol. 600). London: Academic Press
[13] Kammler, D. W., A first course in Fourier analysis (2007), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1144.42001
[14] Kent, J. T.; Mohammadzadeh, M.; Mosammam, A. M., The dimple in Gneiting’s spatial-temporal covariance model, Biometrika, 98, 2, 489-94 (2011) · Zbl 1215.62099 · doi:10.1093/biomet/asr006
[15] Lindsay, B. G., Composite likelihood methods, Contemporary Mathematics, 80, 1, 221-39 (1988) · Zbl 0672.62069
[16] Mardia, K. V.; Marshall, R. J., Maximum likelihood estimation of models for residual covariance in spatial regression, Biometrika, 71, 1, 135-46 (1984) · Zbl 0542.62079 · doi:10.1093/biomet/71.1.135
[17] Mosammam, A. M., Half spectral composite likelihood approach for estimating spatial-temporal covariance functions, Spatial Statistics, 16, 19-34 (2016) · doi:10.1016/j.spasta.2016.01.003
[18] Mosammam, A. M.; Kent, J. T., Estimation and testing for covariance-spectral spatial-temporal models, Environmental and Ecological Statistics, 23, 1, 43-64 (2016) · doi:10.1007/s10651-015-0322-y
[19] Rao, T. S.; Das, S.; Boshnakov, G. N., A frequency domain approach for the estimation of parameters of spatio-temporal stationary random processes, Journal of Time Series Analysis, 35, 4, 357-77 (2014) · Zbl 1311.62138
[20] Rodríguez-Iturbe, I.; Mejía, J. M., The design of rainfall networks in time and space, Water Resources Research, 10, 4, 713-28 (1974) · doi:10.1029/WR010i004p00713
[21] Shumway, R. H.; Stoffer, D. S., Time series analysis and its applications with R examples (2017), Cham, Switzerland: Springer, Cham, Switzerland · Zbl 1367.62004
[22] Stein, M. L., Statistical methods for regular monitoring data, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 5, 667-87 (2005) · Zbl 1101.62115 · doi:10.1111/j.1467-9868.2005.00520.x
[23] Stein, M. L., When does the screening effect not hold?, The Annals of Statistics, 39, 6, 2795-819 (2011) · Zbl 1246.60061 · doi:10.1214/11-AOS909
[24] Vecchia, A. V., Estimation and model identification for continuous spatial processes, Journal of the Royal Statistical Society: Series B (Methodological), 50, 297-312 (1988) · doi:10.1111/j.2517-6161.1988.tb01729.x
[25] Whittle, P., On stationary processes in the plane, Biometrika, 41, 3-4, 434-49 (1954) · Zbl 0058.35601 · doi:10.1093/biomet/41.3-4.434
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.