×

A simple and improved score confidence interval for a single proportion. (English) Zbl 07535557

Summary: Confidence interval (CI) for a proportion has been a topic discussed repeatedly in the literature because of its omnipresence in applications. A wide variety of CIs have been proposed since the Wald CI for a proportion performs quite poorly. Among them, the Wilson score interval is widely recommended. However, the Wilson score method suffers from the so-called “downward spikes” when the proportion is close to 0 or 1. Except for the exact methods which ensure the coverage probability be at least the nominal size, the performances of existing proposed methods are similar to the Wilson score CI or its slightly improved version at the cost of increased interval width or computational complexity. In this study, we propose a simple CI which has very good performance in the coverage probability, confidence width, and the location. Especially when the proportion is <20% or >80% the CI proposed has a shorter confidence width than the Wilson score method. In combination our new method with the Newcombe’s hybrid way to construct CI for the difference of two independent proportions, we also get a better CI.

MSC:

62-XX Statistics

Software:

R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agresti, A., Categorical data analysis (2013), New Jersey: Wiley, New Jersey · Zbl 1281.62022
[2] Agresti, A.; Caffo, B., Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures, The American Statistician, 54, 4, 280-88 (2000) · Zbl 1250.62016 · doi:10.2307/2685779
[3] Agresti, A.; Coull, B. A., Approximate is better than “exact” for interval estimation of binomial proportions, The American Statistician, 52, 2, 119-26 (1998) · doi:10.2307/2685469
[4] Agresti, A.; Hitchcock, D. B., Bayesian inference for categorical data analysis, Statistical Methods and Applications, 14, 3, 297-330 (2005) · Zbl 1124.62307 · doi:10.1007/s10260-005-0121-y
[5] Agresti, A.; Min, Y. Y., On small-sample confidence intervals for parameters in discrete distributions, Biometrics, 57, 3, 963-71 (2001) · Zbl 1209.62041 · doi:10.1111/j.0006-341x.2001.00963.x
[6] Agresti, A.; Min, Y., Frequentist performance of Bayesian confidence intervals for comparing proportions in 2 × 2 contingency tables, Biometrics, 61, 2, 515-23 (2005) · Zbl 1077.62015 · doi:10.1111/j.1541-0420.2005.031228.x
[7] Berry, G.; Armitage, P., Mid-P confidence intervals: A brief review, The Statistician, 44, 4, 417-23 (1995) · doi:10.2307/2348891
[8] Blaker, H., Confidence curves and improved exact confidence intervals for discrete distributions, Canadian Journal of Statistics, 28, 4, 783-98 (2000) · Zbl 0966.62016 · doi:10.2307/3315916
[9] Blyth, C. R.; Still, H. A., Binomial confidence intervals, Journal of the American Statistical Association, 78, 381, 108-16 (1983) · Zbl 0503.62028 · doi:10.1080/01621459.1983.10477938
[10] Brown, L. D.; Cai, T. T.; Dasgupta, A., Interval estimation for a binomial proportion, Statistical Science, 16, 2, 101-17 (2001) · Zbl 1059.62533 · doi:10.1214/ss/1009213286
[11] Clopper, C. J.; Pearson, E. S., The use of confidence or fiducial limits illustrated in the case of the binomial, Biometrika, 26, 4, 404-13 (1934) · JFM 60.1175.02 · doi:10.1093/biomet/26.4.404
[12] Fagerland, M. W.; Lydersen, S.; Laake, P., Recommended confidence intervals for two independent binomial proportions, Statistical Methods in Medical Research, 24, 2, 224-54 (2015) · doi:10.1177/0962280211415469
[13] Fagerland, M. W.; Lydersen, S.; Laake, P., Statistical analysis of contingency tables (2017), Boca Ration: Chapman & Hall/CRC, Boca Ration · Zbl 1412.62002
[14] Fisher, R. A.; Cornish, E. A., The percentile points of distributions having known cumulants, Technometrics, 2, 2, 209-25 (1960) · Zbl 0095.13704 · doi:10.1080/00401706.1960.10489895
[15] Ghosh, B. K., A comparison of some approximate confidence intervals for the binomial parameter, Journal of the American Statistical Association, 74, 368, 894-900 (1979) · Zbl 0429.62025 · doi:10.1080/01621459.1979.10481051
[16] Guan, Y., A generalized score confidence interval for a binomial proportion, Journal of Statistical Planning and Inference, 142, 4, 785-93 (2012) · Zbl 1428.62122 · doi:10.1016/j.jspi.2011.09.010
[17] Lu, H.; Jin, H.; Wang, Z.; Chen, C.; Lu, Y., Prior-free probabilistic interval estimation for binomial proportion, Test, 28, 2, 522-42 (2019) · Zbl 1420.62127 · doi:10.1007/s11749-018-0588-0
[18] Martin, R.; Liu, C., Inferential models: A framework for prior-free posterior probabilistic inference, Journal of the American Statistical Association, 108, 501, 301-13 (2013) · Zbl 06158344 · doi:10.1080/01621459.2012.747960
[19] Martin, R.; Liu, C., Marginal inferential models: Prior-free probabilistic inference on interest parameters, Journal of the American Statistical Association, 110, 512, 1621-31 (2015) · Zbl 1373.62028 · doi:10.1080/01621459.2014.985827
[20] Newcombe, R. G., Two-sided confidence intervals for the single proportion: Comparison of seven methods, Statistics in Medicine, 17, 8, 857-72 (1998) · doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
[21] Newcombe, R. G., Interval estimation for the difference between independent proportions: Comparison of eleven methods, Statistics in Medicine, 17, 8, 873-90 (1998) · doi:10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
[22] Newcombe, R. G., Measures of location for confidence intervals for proportions, Communications in Statistics - Theory and Methods, 40, 10, 1743-67 (2011) · Zbl 1277.62089 · doi:10.1080/03610921003646406
[23] Newcombe, R. G., Confidence intervals for proportions and related measures of effect size (2012), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1263.62089
[24] Perondi, M. B. M.; Reis, A. G.; Paiva, E. F.; Nadkarni, V. M.; Berg, R. A., A comparison of high-dose and standard-dose epinephrine in children with cardiac arrest, The New England Journal of Medicine, 350, 17, 1722-30 (2004) · doi:10.1056/NEJMoa032440
[25] R Core Team, R: A language and environment for statistical computing (2018), Vienna, Austria: R Foundation for Statistical Computing, Vienna, Austria
[26] Reiczigel, J., Confidence intervals for the binomial parameter: Some new considerations, Statistics in Medicine, 22, 4, 611-21 (2003) · doi:10.1002/sim.1320
[27] Santner, T. J.; Duffy, D. E., The statistical analysis of discrete data (2012), New York: Springer Science & Business Media, New York
[28] Shao, J., Mathematical statistics: Exercises and solutions (2006), New York: Springer Science & Business Media, New York
[29] Snedecor, G. W.; Cochran, W. G., Statistical methods (1967), Ames: Iowa State University Press, Ames · Zbl 0727.62003
[30] Stuart, A.; Ord, K., Kendall’s advanced theory of statistics: Volume 1: Distribution theory (2009), New Jersey: Wiley, New Jersey
[31] Vollset, S. E., Confidence intervals for a binomial proportion, Statistics in Medicine, 12, 9, 809-24 (1993) · doi:10.1002/sim.4780120902
[32] Wilson, E. B., Probable inference, the law of succession, and statistical inference, Journal of the American Statistical Association, 22, 158, 209-12 (1927) · doi:10.1080/01621459.1927.10502953
[33] Yu, W.; Guo, X.; Xu, W., An improved score interval with a modified midpoint for a binomial proportion, Journal of Statistical Computation and Simulation, 84, 5, 1022-38 (2014) · Zbl 1453.62428 · doi:10.1080/00949655.2012.738211
[34] Zhou, X. H.; Li, C. M.; Yang, Z., Improving interval estimation of binomial proportions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366, 1874, 2405-18 (2008) · doi:10.1098/rsta.2008.0037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.