×

Exponential stability for delayed complex-valued neural networks with reaction-diffusion terms. (English) Zbl 1487.34142

Summary: In this study, we investigate reaction-diffusion complex-valued neural networks with mixed delays. The mixed delays include both time-varying and infinite distributed delays. Criteria are derived to ensure the existence, uniqueness, and exponential stability of the equilibrium state of the addressed system on the basis of the M-matrix properties and homeomorphism mapping theories as well as the vector Lyapunov function method. The results demonstrate the positive effect of reaction-diffusion on the stability, which further improves the existing conditions. Finally, the analysis of several examples is compared to the present results to verify the correctness and reduced conservatism of the primary results.

MSC:

34K20 Stability theory of functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
93B70 Networked control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tanaka, G.; Aihara, K., Complex-valued multistate associative memory with nonlinear multilevel functions for gray-level image reconstruction, IEEE Trans. Neural Netw., 20, 1463-1473 (2009) · doi:10.1109/TNN.2009.2025500
[2] Wang, X. D.; Che, M. L.; Wei, Y. M., Complex-valued neural networks for the Takagi vector of complex symmetric matrices, Neurocomputing, 223, 77-85 (2017) · doi:10.1016/j.neucom.2016.10.034
[3] Xu, Q.; Xu, X. H.; Zhuang, S. X.; Xiao, J. X.; Song, C. H.; Che, C., New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics, Appl. Math. Comput., 338, 552-566 (2018) · Zbl 1427.93114
[4] Hirose, A., Complex-valued neural networks, Advances and Applications (2013), New York: Wiley, New York · Zbl 1388.68009
[5] Xu, X. H.; Zhang, J. Y.; Shi, J. Z., Exponential stability of complex-valued neural networks with mixed delays, Neurocomputing, 128, 483-490 (2014) · doi:10.1016/j.neucom.2013.08.014
[6] Song, Q. K.; Yu, Q. Q.; Zhao, Z. J.; Liu, Y. R.; Alsaadi, F., Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties, Neural Netw., 103, 55-62 (2018) · Zbl 1442.34108 · doi:10.1016/j.neunet.2018.03.008
[7] You, X. X.; Song, Q. K.; Zhao, Z. J., Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays, Neural Netw., 123, 248-260 (2020) · Zbl 1443.93123 · doi:10.1016/j.neunet.2019.12.012
[8] Guo, R. N.; Zhang, Z. Y.; Liu, X. P.; Lin, C., Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays, Appl. Math. Comput., 311, 100-117 (2017) · Zbl 1429.93306 · doi:10.1016/j.cam.2016.07.010
[9] Guo, R. N.; Zhang, Z. Y.; Liu, X. P.; Lin, C.; Wang, H. X.; Chen, J., Exponential input-to-state stability for complex-valued memristor-based BAM neural networks with multiple time-varying delays, Neurocomputing, 275, 2041-2054 (2018) · doi:10.1016/j.neucom.2017.10.038
[10] Shi, Y. C.; Cao, J. D.; Chen, G. R., Exponential stability of complex-valued memristor-based neural networks with time-varying delays, Appl. Math. Comput., 313, 222-234 (2017) · Zbl 1426.92004
[11] Wang, Z. Y.; Liu, X. Z., Exponential stability of impulsive complex-valued neural networks with time delay, Math. Comput. Simul., 156, 143-157 (2019) · Zbl 07316572 · doi:10.1016/j.matcom.2018.07.006
[12] Zhang, Z. Y.; Liu, X. P.; Chen, J.; Guo, R. N.; Zhou, S. W., Further stability analysis for delayed complex-valued recurrent neural networks, Neurocomputing, 251, 81-89 (2017) · doi:10.1016/j.neucom.2017.04.013
[13] Wang, L. M.; Song, Q. K.; Liu, Y. R.; Zhao, Z. J.; Alsaadi, F., Global asymptotic stability of impulsive fractional-order complex-valued neural networks with time delay, Neurocomputing, 243, 49-59 (2017) · doi:10.1016/j.neucom.2017.02.086
[14] Zhang, Z. Q.; Zheng, T., Global asymptotic stability of periodic solutions for delayed complex-valued Cohen-Grossberg neural networks by combining coincidence degree theory with LMI method, Neurocomputing, 289, 220-230 (2018) · doi:10.1016/j.neucom.2018.02.033
[15] Tang, Q.; Jian, J. G., Global exponential convergence for impulsive inertial complex-valued neural networks with time-varying delays, Math. Comput. Simul., 159, 39-56 (2019) · Zbl 07316638 · doi:10.1016/j.matcom.2018.10.009
[16] Jian, J.; Wan, P., Global exponential convergence of fuzzy complex-valued neural networks with time-varying delays and impulsive effects, Fuzzy Sets Syst., 338, 23-39 (2018) · Zbl 1402.34080 · doi:10.1016/j.fss.2017.12.001
[17] Popa, C., Global μ-stability of neutral-type impulsive complex-valued BAM neural networks with leakage delay and unbounded time-varying delays, Neurocomputing, 376, 73-94 (2020) · doi:10.1016/j.neucom.2019.09.008
[18] Ali, M.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B., Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020) · Zbl 1454.34102 · doi:10.1016/j.cnsns.2019.105088
[19] Zhang, D. W.; Jiang, H. J.; Wang, J. L.; Yu, Z. Y., Global stability of complex-valued recurrent neural networks with both mixed time delays and impulsive effect, Neurocomputing, 282, 157-166 (2018) · doi:10.1016/j.neucom.2017.12.022
[20] Xu, X. H.; Zhang, J. Y.; Shi, J. Z., Dynamical behaviour analysis of delayed complex-valued neural networks with impulsive effect, Int. J. Syst. Sci., 48, 686-694 (2017) · Zbl 1358.93093 · doi:10.1080/00207721.2016.1206988
[21] Samidurai, R.; Sriraman, R.; Zhu, S., Leakage delay-dependent stability analysis for complex-valued neural networks with discrete and distributed time-varying delays, Neurocomputing, 338, 262-273 (2019) · doi:10.1016/j.neucom.2019.02.027
[22] Xu, D. S.; Tan, M. C., Multistability of delayed complex-valued competitive neural networks with discontinuous non-monotonic piecewise nonlinear activation functions, Commun. Nonlinear Sci. Numer. Simul., 62, 352-377 (2018) · Zbl 1470.92030 · doi:10.1016/j.cnsns.2018.02.033
[23] Hu, B. X.; Song, Q. K.; Zhao, Z. J., Robust state estimation for fractional-order complex-valued delayed neural networks with interval parameter uncertainties: LMI approach, Appl. Math. Comput., 373 (2020) · Zbl 1433.34011
[24] Cao, Y.; Sriraman, R.; Shyamsundarraj, N.; Samidurai, R., Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays, Math. Comput. Simul., 171, 207-220 (2020) · Zbl 1510.93236 · doi:10.1016/j.matcom.2019.05.011
[25] Gunasekaran, N.; Zhai, G. S., Stability analysis for uncertain switched delayed complex-valued neural networks, Neurocomputing, 367, 198-206 (2019) · doi:10.1016/j.neucom.2019.08.030
[26] Wang, P. F.; Zou, W. Q.; Su, H., Stability of complex-valued impulsive stochastic functional differential equations on networks with Markovian switching, Appl. Math. Comput., 348, 338-354 (2019) · Zbl 1428.34110 · doi:10.1016/j.cam.2018.08.025
[27] Ji, C. H.; Qiao, Y. H.; Miao, J.; Duan, L. J., Stability and Hopf bifurcation analysis of a complex-valued Wilson-Cowan neural network with time delay, Chaos Solitons Fractals, 115, 45-61 (2018) · Zbl 1416.34052 · doi:10.1016/j.chaos.2018.04.022
[28] Dong, T.; Bai, J. Q.; Yang, L., Bifurcation analysis of delayed complex-valued neural network with diffusions, Neural Process. Lett., 50, 1019-1033 (2019) · doi:10.1007/s11063-018-9899-0
[29] Huang, Y. L.; Hou, J.; Yang, E. F., Passivity and synchronization of coupled reaction-diffusion complex-valued memristive neural networks, Appl. Math. Comput., 379 (2020) · Zbl 1460.35194
[30] Xu, X. H.; Zhang, J. Y.; Zhang, W. H., Stochastic exponential robust stability of interval neural networks with reaction-diffusion terms and mixed delays, Commun. Nonlinear Sci. Numer. Simul., 17, 4780-4791 (2012) · Zbl 1302.92018 · doi:10.1016/j.cnsns.2012.04.007
[31] Lu, X. M.; Chen, W. H.; Ruan, Z.; Huang, T. W., A new method for global stability analysis of delayed reaction-diffusion neural networks, Neurocomputing, 317, 127-136 (2018) · doi:10.1016/j.neucom.2018.08.015
[32] Wang, Z. S.; Zhang, H. G.; Li, P., An LMI approach to stability analysis of reaction-diffusion Cohen-Grossberg neural networks concerning Dirichlet boundary conditions and distributed delays, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 40, 1596-1606 (2010) · doi:10.1109/TSMCB.2010.2043095
[33] Ma, Q.; Feng, G.; Xu, S. Y., Delay-dependent stability criteria for reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., 43, 1913-1920 (2013) · doi:10.1109/TSMCB.2012.2235178
[34] Wu, K. N.; Ren, M. Z.; Liu, X. Z., Exponential input-to-state stability of stochastic delay reaction-diffusion neural networks, Neurocomputing, 412, 399-405 (2020) · doi:10.1016/j.neucom.2019.09.118
[35] Wang, Z. S.; Zhang, H. G., Global asymptotic stability of reaction-diffusion Cohen-Grossberg neural networks with continuously distributed delays, IEEE Trans. Neural Netw., 21, 39-49 (2010) · doi:10.1109/TNN.2009.2033910
[36] Yang, Z. C.; Zhou, W. S.; Huang, T. W., Input-to-state stability of delayed reaction-diffusion neural networks with impulsive effects, Neurocomputing, 333, 261-272 (2019) · doi:10.1016/j.neucom.2018.12.019
[37] Wang, J. L.; Wu, H. N.; Guo, L., Passivity and stability analysis of reaction-diffusion neural networks with Dirichlet boundary conditions, IEEE Trans. Neural Netw., 22, 2105-2116 (2011) · Zbl 1255.91273 · doi:10.1109/TNN.2011.2170096
[38] Wang, J. L.; Qiu, S. H.; Chen, W. Z.; Wu, H. N.; Huang, T. W., Recent advances on dynamical behaviors of coupled neural networks with and without reaction-diffusion terms, IEEE Trans. Neural Netw. Learn. Syst. (2020) · doi:10.1109/TNNLS.2020.2964843
[39] Suriguga, K. Y.; Wang, C. H.; Xia, H. W., Robust mean square stability of delayed stochastic generalized uncertain impulsive reaction-diffusion neural networks, J. Franklin Inst. (2020) · Zbl 1455.93149 · doi:10.1016/j.jfranklin.2020.04.011
[40] Sheng, Y.; Zhang, H.; Zeng, Z. G., Stability and robust stability of stochastic reaction-diffusion neural networks with infinite discrete and distributed delays, IEEE Trans. Syst. Man Cybern. Syst., 50, 1721-1732 (2020) · doi:10.1109/TSMC.2017.2783905
[41] Wei, T. D.; Lin, P.; Wang, Y. F.; Wang, L. S., Stability of stochastic impulsive reaction-diffusion neural networks with S-type distributed delays and its application to image encryption, Neural Netw., 116, 35-45 (2019) · Zbl 1441.93332 · doi:10.1016/j.neunet.2019.03.016
[42] Wang, T. Y.; Zhu, Q. X., Stability analysis of stochastic BAM neural networks with reaction-diffusion, multi-proportional and distributed delays, Phys. A, Stat. Mech. Appl., 533 (2019) · Zbl 07570014 · doi:10.1016/j.physa.2019.121935
[43] Balasubramaniam, P.; Vidhya, C., Global asymptotic stability of stochastic BAM neural networks with distributed delays and reaction-diffusion terms, Comput. Appl. Math., 234, 3458-3466 (2010) · Zbl 1198.35025 · doi:10.1016/j.cam.2010.05.007
[44] Balasubramaniam, P.; Vidhya, C., Exponential stability of stochastic reaction-diffusion uncertain fuzzy neural networks with mixed delays and Markov jumping parameters, Expert Syst. Appl., 39, 3109-3115 (2012) · doi:10.1016/j.eswa.2011.08.174
[45] Xu, X. H.; Xu, Q.; Yang, J. B.; Xue, H. B.; Xu, Y. H., Further research on exponential stability for quaternion-valued neural networks with mixed delays, Neurocomputing, 400, 186-205 (2020) · doi:10.1016/j.neucom.2020.03.004
[46] Ji, X. R.; Lu, J. Q.; Lou, J. G.; Qiu, J. L.; Shi, K. B., A unified criterion for global exponential stability of quaternion-valued neural networks with hybrid impulses, Int. J. Robust Nonlinear Control, 30, 8098-8116 (2020) · Zbl 1525.93347 · doi:10.1002/rnc.5210
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.