×

A double critical mass phenomenon in a no-flux-Dirichlet Keller-Segel system. (English. French summary) Zbl 1494.35047

In this paper, the authors considered the following cross-diffusion system \[ u_t=\Delta u-\nabla\cdot(u\nabla v),\quad x\in\Omega,t>0, \] \[ 0=\Delta v-kv+u,\quad x\in\Omega,t>0, \] \[ u(x,0)=u_0(x),\quad x\in\Omega, \] \[ \frac{\partial u}{\partial \nu}-u\frac{\partial v}{\partial\nu}=v=0,\quad x\in\partial\Omega, \] in a finite domain \(\Omega\subset\mathbb{R}^N\), \(N\ge 2,\) with \(k\ge0\). This modification in the boundary setting is shown to go along with a substantial change with respect to the potential to support the emergence of singular structures: It is, inter alia, revealed that in contexts of radial solutions in balls there exist two critical mass levels, distinct from each other whenever \(k > 0\) or \(N\ge 3\), that separate ranges within which (i) all solutions are global in time and remain bounded, (ii) both global bounded and exploding solutions exist, or (iii) all nontrivial solutions blow up. While critical mass phenomena distinguishing between regimes of type (i) and (ii) belong to the well-understood characteristics of the above system when posed under classical no-flux boundary conditions in planar domains, the discovery of a distinct secondary critical mass level related to the occurrence of (iii) seems to have no nearby precedent. In the planar case with the domain being a disk, the analytical results are supplemented with some numerical illustrations, and it is discussed how the findings can be interpreted biophysically for the situation of a cell on a flat substrate.

MSC:

35B44 Blow-up in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
74L15 Biomechanical solid mechanics
92C10 Biomechanics
92C17 Cell movement (chemotaxis, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ballestrem, C.; Wehrle-Haller, B.; Hinz, B.; Imhof, B. A., Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration, Mol. Biol. Cell, 11, 9, 2999-3012 (2000)
[2] Barnhart, E.; Lee, K.-C.; Allen, G. M.; Theriot, J. A.; Mogilner, A., Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes, Proc. Natl. Acad. Sci. USA, 112, 16, 5045-5050 (2015)
[3] Bellomo, M.; Winkler, M., Finite-time blow-up in a degenerate chemotaxis system with flux limitation, Trans. Am. Math. Soc. Ser. B, 4, 31-67 (2017) · Zbl 1367.35044
[4] Berlyand, L.; Fuhrmann, J.; Rybalko, V., Bifurcation of traveling waves in a Keller-Segel type free boundary model of cell motility, Commun. Math. Sci., 16, 3, 735-762 (2018) · Zbl 1398.35299
[5] Biler, P., Existence and nonexistence of solutions for a model of gravitational interaction of particles. III, Colloq. Math., 68, 2, 229-239 (1995) · Zbl 0836.35076
[6] Biler, P.; Hilhorst, D.; Nadzieja, T., Existence and nonexistence of solutions for a model of gravitational interaction of particles. II, Colloq. Math., 67, 2, 297-308 (1994) · Zbl 0832.35015
[7] Biler, P.; Nadzieja, T., Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math., 66, 2, 319-334 (1994) · Zbl 0817.35041
[8] Blanchet, A.; Carrillo, J. A.; Masmoudi, N., Infinite time aggregation for the critical Patlak-Keller-Segel model in \(\mathbb{R}^2\), Commun. Pure Appl. Math., 61, 10, 1449-1481 (2008) · Zbl 1155.35100
[9] Blanchet, A.; Dolbeault, J.; Perthame, B., Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equ., 2006, 44, Article 1 pp. (2006) · Zbl 1112.35023
[10] Cao, X., Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35, 5, 1891-1904 (2015) · Zbl 1515.35047
[11] Croft, D. R.; Coleman, M. L.; Li, S.; Robertson, D.; Sullivan, T.; Stewart, C. L.; Olson, M. F., Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration, J. Cell Biol., 168, 2, 245-255 (2005)
[12] Friedman, A., Partial Differential Equations (1969), Holt, Rinehart and Winston, Inc.: Holt, Rinehart and Winston, Inc. New York-Montreal, Que.-London · Zbl 0224.35002
[13] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224 (1977), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0361.35003
[14] Herrero, M. A.; Velázquez, J. J.L., A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 24, 4, 633-683 (1997) · Zbl 0904.35037
[15] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Dtsch. Math.-Ver., 105, 3, 103-165 (2003) · Zbl 1071.35001
[16] Jäger, W.; Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc., 329, 2, 819-824 (1992) · Zbl 0746.35002
[17] Jost, J., Partial Differential Equations, Graduate Texts in Mathematics, vol. 214 (2007), Springer: Springer New York · Zbl 1121.35001
[18] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 3, 399-415 (1970) · Zbl 1170.92306
[19] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23 (1968), American Mathematical Society: American Mathematical Society Providence, R.I., Translated from the Russian by S. Smith · Zbl 0174.15403
[20] Lankeit, J.; Winkler, M., A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data, Nonlinear Differ. Equ. Appl., 24, 4, Article 49 pp. (2017) · Zbl 1373.35166
[21] Lankeit, J.; Winkler, M., Facing low regularity in chemotaxis systems, Jahresber. Dtsch. Math.-Ver., 122, 1, 35-64 (2020) · Zbl 1436.92004
[22] Lieberman, G. M., Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl. (4), 148, 77-99 (1987) · Zbl 0658.35050
[23] Lieberman, G. M., Second Order Parabolic Differential Equations (1996), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ · Zbl 0884.35001
[24] Liu, Y.-J.; Le Berre, M.; Lautenschlaeger, F.; Maiuri, P.; Callan-Jones, A.; Heuzé, M.; Takaki, T.; Voituriez, R.; Piel, M., Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells, Cell, 160, 4, 659-672 (2015)
[25] Miranda, C., Partial Differential Equations of Elliptic Type, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 2 (1970), Springer-Verlag: Springer-Verlag New York-Berlin, Translated from the Italian by Zane C. Motteler · Zbl 0198.14101
[26] Mizoguchi, N.; Souplet, Ph., Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 31, 4, 851-875 (2014) · Zbl 1302.35075
[27] Nagai, T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5, 2, 581-601 (1995) · Zbl 0843.92007
[28] Nagai, T., Behavior of solutions to a parabolic-elliptic system modelling chemotaxis, J. Korean Math. Soc., 37, 5, 721-733 (2000) · Zbl 0962.35026
[29] Nagai, T., Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6, 1, 37-55 (2001) · Zbl 0990.35024
[30] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, 40, 3, 411-433 (1997) · Zbl 0901.35104
[31] Porzio, M. M.; Vespri, V., Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 1, 146-178 (1993) · Zbl 0796.35089
[32] Quittner, P.; Souplet, Ph., Superlinear Parabolic Problems, Birkhäuser Advanced Texts: Basler Lehrbücher (2007), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1128.35003
[33] Recho, P.; Putelat, T.; Truskinovsky, L., Contraction-driven cell motility, Phys. Rev. Lett., 111, 10, Article 108102 pp. (2013)
[34] Rubinstein, B.; Fournier, M. F.; Jacobson, K.; Verkhovsky, A. B.; Mogilner, A., Actin-myosin viscoelastic flow in the keratocyte lamellipod, Biophys. J., 97, 7, 1853-1863 (2009)
[35] Schramm, A. C.; Hocky, G. M.; Voth, G. A.; Martiel, J.-L.; Enrique, M., Plastic deformation and fragmentation of strained actin filaments, Biophys. J., 117, 3, 453-463 (2019)
[36] Senba, T.; Suzuki, T., Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differ. Equ., 6, 1, 21-50 (2001) · Zbl 0999.92005
[37] Suzuki, T., Exclusion of boundary blowup for 2D chemotaxis system provided with Dirichlet boundary condition for the Poisson part, J. Math. Pures Appl. (9), 100, 3, 347-367 (2013) · Zbl 1285.35121
[38] Velázquez, J. J.L., Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions, SIAM J. Appl. Math., 64, 4, 1224-1248 (2004) · Zbl 1058.35022
[39] Wei, D., Global well-posedness and blow-up for the 2-D Patlak-Keller-Segel equation, J. Funct. Anal., 274, 2, 388-401 (2018) · Zbl 1380.35031
[40] Wienholtz, E.; Kalf, H.; Kriecherbauer, T., Elliptische Differentialgleichungen zweiter Ordnung (2009), Springer: Springer Dordrecht · Zbl 1191.35001
[41] Winkler, M., How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases, Math. Ann., 373, 3-4, 1237-1282 (2019) · Zbl 1416.35049
[42] Yam, P. T.; Wilson, C. A.; Ji, L.; Hebert, B.; Barnhart, E. L.; Dye, N. A.; Wiseman, P. W.; Danuser, G.; Theriot, J. A., Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility, J. Cell Biol., 178, 7, 1207-1221 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.