×

An energy harvester with nanoporous piezoelectric double-beam structure. (English) Zbl 1495.74020

Summary: Piezoelectric energy harvesters at nanoscale have been investigated recently in the demand of the miniaturization for the self-power electrical devices. In this paper, a pair of identical nano piezoelectric beams connected with springs and a storage circuit are modeled as an energy harvester. The pores are introduced to reduce the brittleness of the piezoelectric materials. Surface elasticity and Biot’s porous theory are applied to derive the governing equation and analytical solution of the model. The numerical results show that the double-beam harvester behaves much better than the single-beam one regarding the energy collection and resonant frequency range. The original length of the springs and the geometrical dimension of the beams have significant influence on the behavior of the harvester. The higher output power and lower resonant frequency can be achieved by attaching concentrated masses at the ends of the double beams. The output voltage and power depend on the surface piezoelectric constants and solid-fluid coupling piezoelectric parameters. The results are hopefully useful to provide guidance for designing and optimizing the nano energy harvesters.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F15 Electromagnetic effects in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dotti, FE; Reguera, F.; Machado, SP, Damping in a parametric pendulum with a view on energy harvesting, Mech. Res. Commun., 81, 11-16 (2017)
[2] Liang, X.; Zhang, RZ; Hu, SL; Shen, SP, Flexoelectric energy harvesters based on Timoshenko laminated beam theory, J. Intell. Mater. Syst. Struct., 28, 15, 2064-2073 (2017)
[3] Cveticanin, L.; Zukovic, M.; Cveticanin, D., Non-ideal source and energy harvesting, Acta Mech., 228, 10, 3369-3379 (2017) · Zbl 1384.74033
[4] Malaji, PV; Ali, SF, Analysis and experiment of magneto-mechanically coupled harvesters, Mech. Syst. Signal Process., 108, 304-316 (2018)
[5] Wang, X.; John, S.; Watkins, S.; Yu, XH; Xiao, H.; Liang, XY; Wei, HQ, Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters, Mech. Syst. Signal Process., 52-53, 672-684 (2015)
[6] Raju, SS; Umapathy, M.; Uma, G., Design and analysis of high output piezoelectric energy harvester using non uniform beam, Mech. Adv. Mater. Struct., 27, 3, 218-227 (2020)
[7] She, GL; Yuan, FG; Ren, YR; Xiao, WS, On buckling and postbuckling behavior of nanotubes, Int. J. Eng. Sci., 121, 130-142 (2017) · Zbl 1423.74353
[8] Sithole, H.; Mondal, H.; Goqo, S.; Sibanda, P.; Motsa, S., Appl. Math. Comput., 339, 820-836 (2018) · Zbl 1428.76204
[9] Gurtin, ME; Murdoch, AI, Continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., 57, 291-323 (1975) · Zbl 0326.73001
[10] Feng, XQ; Xia, R.; Li, X.; Li, B., Surface effects on the elastic modulus of nanoporous materials, Appl. Phys. Lett., 94, 1, 011916 (2009)
[11] Sharma, ND; Maranganti, R.; Sharma, P., On the possibility of piezoelectric nanocomposites without using piezoelectric materials, J. Mech. Phys. Solids, 55, 2328-2350 (2007) · Zbl 1171.74016
[12] Liu, WY; Deng, F.; Xie, SX; Shen, SP; Li, JY, Electromechanical analysis of direct and converse flexoelectric effects under a scanning probe tip, J. Mech. Phys. Solids, 142, 104020 (2020)
[13] Yan, Z., Modeling of a nanoscale flexoelectric energy harvester with surface effects, Phys. E-Low-Dimens. Syst. Nanostruct., 88, 125-132 (2017)
[14] Shi, SH; Li, P.; Jin, F., Thermal-mechanical-electrical analysis of a nano-scaled energy harvester, Energy, 185, 862-874 (2019)
[15] Wang, KF; Wang, BL; Zeng, S., Analysis of an array of flexoelectric layered nanobeams for vibration energy harvesting, Compos. Struct., 187, 48-57 (2018)
[16] Ni, QQ; Guan, XY; Zhu, YF; Dong, YB; Xia, H., Nanofiber-based wearable energy harvesters in different body motions, Compos. Sci. Technol., 200, 108478 (2020)
[17] Biot, MA, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 182-185 (1955) · Zbl 0067.23603
[18] Boutt, DF; Cook, BK; McPherson, BJOL; Williams, JR, Direct simulation of fluid-solid mechanics in porous media using the discrete element and lattice-Boltzmann methods, J. Geophys. Res.- Solid Earth, 112, B10, B10209 (2007)
[19] Allegrini, J.; Maesschalck, J.; Alessi, G.; Glabeke, G.; Christophe, J.; van Beeck, J., Porous and geometry-resolved CFD modelling of a lattice transmission tower validated by drag force and flow field measurements, Eng. Struct., 168, 462-472 (2018)
[20] Zhu, HX; Wang, ZB, Size-dependent and tunable elastic and geometric properties of hierarchical nano-porous materials, Sci. Adv. Mater., 5, 6, 677-686 (2013)
[21] Karami, B.; Janghorban, M., On the dynamics of porous nanotubes with variable material properties and variable thickness, Int. J. Eng. Sci., 136, 53-66 (2019) · Zbl 1423.82051
[22] Faroughi, S.; Rahmani, A.; Friswell, MI, On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model, Appl. Math. Model., 80, 169-190 (2020) · Zbl 1481.74375
[23] Aksoy, HG, Numerical experiments on effect of morphology on wave propagation in nanoporous materials, Mech. Adv. Mater. Struct., 25, 5, 375-385 (2018)
[24] Guo, HJ; Tian, XY; Fan, JF; Zhang, H.; Zhang, Q.; Li, WG; Dong, HB; Xu, BS, The compressive behavior and energy absorption performance of nano-crystalline porous magnesium fabricated by hydrogenation-dehydrogenation and spark plasma sintering technique, J. Alloys Compd., 862, 158698 (2021)
[25] Zhang, TY; Zhao, MH; Liu, GN, Failure behavior and failure criterion of conductive cracks (deep notches) in piezoelectric ceramics I—the charge-free zone model, Acta Mater., 52, 7, 2013-2024 (2004)
[26] Wilson, ZA; Borden, MJ; Landis, CM, A phase-field model for fracture in piezoelectric ceramics, Int. J. Fract., 183, 2, 135-153 (2013)
[27] Zhang, Y.; Topolov, VY; Isaeva, AN; Bowen, CR; Pearce, H.; Khanbareh, H., Piezoelectric performance of PZT-based materials with aligned porosity: experiment and modelling, Smart Mater. Struct., 28, 12, 125021 (2019)
[28] Li, JF; Takagi, K.; Ono, M.; Pan, W.; Watanabe, R.; Almajid, A.; Taya, M., Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators, J. Am. Ceram. Soc., 86, 7, 1097-1098 (2003)
[29] Yang, A.; Wang, CA; Guo, R.; Huang, Y.; Nan, CW, Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics, Ceram. Int., 36, 2, 549-554 (2010)
[30] Nasihatgozar, M.; Daghigh, V.; Eskandari, M.; Nikbin, K.; Simoneau, A., Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes, Int. J. Mech. Sci., 107, 69-79 (2016)
[31] Barati, MR; Shahverdi, H.; Zenkour, AM, Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory, Mech. Adv. Mater. Struct., 24, 12, 987-998 (2017)
[32] Arshid, E.; Khorshidvand, AR, Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method, Thin-walled Struct., 125, 220-233 (2018)
[33] Barati, MR, On wave propagation in nanoporous materials, Internal J. Eng. Sci., 116, 1-11 (2017) · Zbl 1423.74255
[34] Guo, S., An eigen expression for piezoelectrically stiffened elastic and dielectric constants based on the static theory, Acta Mech., 210, 345-350 (2010) · Zbl 1397.74065
[35] Lacour, O.; Lagier, M.; Sornette, D., Effect of dynamic fluid compressibility and permeability on porous piezoelectric ceramics, J. Acoust. Soc. Am., 96, 3548-3557 (1994)
[36] Gomez, TE; Montero, F., Highly coupled dielectric behavior of porous ceramics embedding a polymer, Appl. Phys. Lett., 68, 263-265 (1996)
[37] Vashishth, AK; Gupta, V., Wave propagation in transversely isotropic porous piezoelectric materials, Int. J. Solids Struct., 46, 3620-3632 (2009) · Zbl 1183.74118
[38] Sharma, MD, Piezoelectric effect on the velocities of waves in an anisotropic piezo-poroelastic medium, Proc. R. Soc. A, 466, 1977-1992 (2010) · Zbl 1253.74046
[39] Vashishth, AK; Gupta, V., Ultrasonic wave’s interaction at fluid-porous piezoelectric layered interface, Ultrasonics, 53, 479-494 (2013)
[40] Lacour, O.; Lagier, M., Effect of dynamic fluid compressibility and permeability on porous piezoelectric ceramics, J. Acoust. Soc. Am., 96, 6, 3548-3557 (1994)
[41] Alvarez-Arenas, TG; Francisco, M., New constitutive relations for piezoelectric composites and porous piezoelectric ceramics, J. Acoust. Soc. Am., 100, 5, 3104-3114 (1996)
[42] Wang, JL; Geng, LF; Zhou, SX; Zhang, ZE; Lai, ZH; Yurchenko, D., Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester, Acta. Mech. Sin., 36, 3, 592-605 (2020)
[43] Lan, CB; Chen, ZN; Hu, GB; Liao, YB; Qin, WY, Achieve frequency-self-tracking energy harvesting using a passively adaptive cantilever beam, Mech. Syst. Signal Process., 156, 107672 (2021)
[44] Li, HS; Sun, HX; Song, BY; Zhang, D.; Shang, XC; Liu, DH, Nonlinear dynamic response of an L-shaped beam-mass piezoelectric energy harvester, J. Sound Vib., 499, 116004 (2021)
[45] Yang, ZT; Yang, JS, Connected vibrating piezoelectric bimorph beams as a wide-band piezoelectric power harvester, J. Intell. Mater. Syst. Struct., 20, 569-574 (2009)
[46] Yan, Z.; Jiang, LY, Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints, Proc. R. Soc. A—Math. Phys. Eng. Sci., 468, 2147, 3458-3475 (2012) · Zbl 1371.74198
[47] Sladek, J.; Sladek, V.; Gfrerer, M.; Schanz, M., Mindlin theory for the bending of porous plates, Acta Mech., 226, 6, 1909-1928 (2015) · Zbl 1325.74094
[48] Bichurin, MI; Filippov, DA; Petrov, VM, Theory of magnetoelectric effects at microwave frequencies in a piezoelectric/magnetostrictive multilayer composite, Phys. Rev. B, 64, 9, 094409 (2001)
[49] Petrov, VM; Srinivasan, G.; Bichurin, MI; Galkina, TA, Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers, J. Appl. Phys., 105, 6, 063911 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.