Geometry, dynamics and spectrum of operators on discrete spaces. Abstracts from the workshop held January 3–9, 2021 (online meeting). (English) Zbl 07513984

Summary: Spectral theory is a gateway to fundamental insights in geometry and mathematical physics. In recent years the study of spectral problems in discrete spaces has gained enormous momentum. While there are some relations to continuum spaces, fascinating new phenomena have been discovered in the discrete setting throughout the last decade. The goal of the workshop was to bring together experts reporting about the recent developments in a broad variety of dynamical or geometric models and to reveal new connections and research directions.


00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
47-06 Proceedings, conferences, collections, etc. pertaining to operator theory
47A10 Spectrum, resolvent
47B80 Random linear operators
47A35 Ergodic theory of linear operators
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
52C23 Quasicrystals and aperiodic tilings in discrete geometry
46L10 General theory of von Neumann algebras
Full Text: DOI


[1] A. Boutet de Monvel, D. Lenz, P. Stollmann, An uncertainty principle, Wegner estimates and localization near fluctuation boundaries, Math. Z. 269, 663-670, (2011). · Zbl 1231.82030
[2] A. Elgart, A. Klein, Ground state energy of trimmed discrete Schrödinger operators and localization for trimmed Anderson models, J. Spectr. Theory 4, 391-413, (2014). · Zbl 1304.82039
[3] F. Gesztesy, G.M. Graf, B. Simon, The ground state energy of Schrödinger operators, Com-mun. Math. Phys. 150, no. 2, 375-384, (1992). · Zbl 0784.34061
[4] D. Lenz, P. Stollmann, Universal lower bounds for Laplacians on weighted Graphs, Analysis and Geometry on Graphs and Manifolds 461, 156-171, (2020). · Zbl 1473.05117
[5] D. Lenz, P. Stollmann, G. Stolz, An uncertainty principle and lower bounds for the Dirichlet Laplacian on graphs, J. Spectral Theory 10, 115-145, (2020). · Zbl 1448.47051
[6] V.D. Neißichkait, private communication, (1961).
[7] I.Z. Pesenson, Sampling by averages and average splines on Dirichlet spaces and on combi-natorial graphs, arXiv-Preprint 1901.08726 (2019).
[8] D. H. Armitage, S. J. Gardiner, Classical potential theory, Springer Monographs in Mathe-matics. Springer-Verlag London, Ltd., London (2001). · Zbl 0972.31001
[9] D. I. Cartwright, Paolo M. Soardi, W. Woess, Martin and end compactifications for non-locally finite graphs, Trans. Amer. Math. Soc. 338, no.2, 679-693, (1993). · Zbl 0777.60074
[10] J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85, 431-458, (1957). · Zbl 0097.34004
[11] J. L. Doob, A non-probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier (Grenoble) 9, 293-300, (1959). · Zbl 0095.08203
[12] M. El Kadiri, B. Fuglede, Martin boundary of a fine domain and a Fatou-Naïm-Doob theorem for finely superharmonic functions, Potential Anal. 44, no. 1, 1-25, (2016). · Zbl 1338.31016
[13] F. Fischer, M. Keller, Limits to the Martin boundary for Schrödinger operators on graphs, Work in progress.
[14] F. Fischer, M. Keller, Riesz decompositions for Schrödinger operators on graphs J. Math. Anal. Appl., 495, no. 1, 124674, (2021). · Zbl 1469.31023
[15] K. Gowrisankaran, Fatou-Naïm-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 16, 455-467, (1966). · Zbl 0145.15103
[16] K Gowrisankaran, D. Singman, Minimal fine limits on trees, Illinois J. Math., 48, no.2, 359-389, (2004). · Zbl 1067.31004
[17] L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7, 183-281, (1957).
[18] W. Woess, Denumerable Markov chains, EMS Textbooks in Mathematics, European Math-ematical Society, Zürich (2009), Generating functions, boundary theory, random walks on trees.
[19] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156, 153-201, (1986).
[20] P. Petersen and G. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal. 7, 1031-1045, (1997). · Zbl 0910.53029
[21] O. Post, X. Ramos Olivé, and C. Rose, Quantitative Sobolev extensions and the Neumann heat kernel for integral Ricci curvature conditions, arXiv-Preprint 2007.04120, (2020).
[22] M. Keller, D. Lenz, Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine Angew. Math. 666, 189-223, (2012). · Zbl 1252.47090
[23] B. Hua, J. Masamune, R. K. Wojciechowski, Essential self-adjointness and the L 2 -Liouville property, arXiv-Preprint 2012.08936, (2020).
[24] X. Huang, M. Keller, J. Masamune, R. K. Wojciechowski, A note on self-adjoint extensions of the Laplacian on weighted graphs, J. Funct. Anal. 265, 1556-1578, (2013). · Zbl 1435.35400
[25] A. Inoue, Essential self-adjointness of Schrödinger operators on the weighted integers, work in progress.
[26] A. Inoue, J. Masamune, R. K. Wojciechowski, Essential self-adjointness of the Laplacian on weighted graphs: stability and characterizations, work in progress.
[27] R. K. Wojciechowski, Stochastic completeness of graphs, ProQuest LLC, Ann Arbor, MI, (2008). Thesis (Ph.D.)-City University of New York.
[28] L. Bartholdi, R. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Steklov Inst. Math 231, 1-41, (2000). · Zbl 1172.37305
[29] S. Beckus, F. Pogorzelski, Spectrum of Lebesgue measure zero for Jacobi matrices of qua-sicrystals, Math. Phys. Anal. Geom. 16, no. 3, 289-308, (2013). · Zbl 1273.81087
[30] N-B. Dang, R. Grigorchuk, M. Lyubich, Self-similar groups and holomorphic dynamics: Renormalization, integrability, and spectrum, arXiv-Preprint 2010.00675, (2020).
[31] A.Dudko, R. Grigorchuk, On spectra of Koopman, groupoid and quasi-regular representa-tions, Journal of Modern Dynamics 11, 99-123, (2017). · Zbl 06991096
[32] R. Grigorchuk, On the Burnside problem on periodic groups, Funkts. Anal. Prilozen. 14, no. 1, 53-54, (1980).
[33] R. Grigorchuk, The growth degrees of finitely generated groups and the theory of invariant means, Math. USSR Izv. 48, no. 5, 939-985, (1984).
[34] R. Grigorchuk, D. Lenz, T. Nadnibeda, Schreier graphs of Grigorchuk’s group and a subshift associated to a non-primitive substitution, Groups, graphs and random walks, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 436, 250-299, (2017). · Zbl 1371.05123
[35] R. Grigorchuk, D. Lenz, T. Nadnibeda, Combinatorics of the subshift assocciated to Grig-orchuk’s group, Tr. Mat. Inst. Steklova 297, (2017), Poryadok i Khaos v Dinamicheskikh Sistemakh, 297, 158-164, (2017).
[36] R. Grigorchuk, D. Lenz, T. Nadnibeda, Spectra of Schreier graphs of Grigorchuk’s group and Schrödinger operators with aperiodic order, Math. Ann. 370, no. 3-4, 1607-1637, (2018). · Zbl 1383.05196
[37] R. Grigorchuk D. Lenz, T. Nadnibeda, D. Sell, Subshifts with leading sequences, uniformity of cocycles and spectra of Schreier graphs, arXiv-Preprint 1906.01898, (2019).
[38] R. Grigorchuk, S. Samarakoon, Integrable and Chaotic Systems Associated with Fractal Groups, arXiv-Preprint 2012.11724, (2020).
[39] R. Grigorchuk, T.Nagnibeda, A.Perez, On spectra and spectral measures of Schreier and Cayley graphs, arXiv-Preprint 2007.03309, (2020).
[40] F. Bauer, P. Horn, Y. Lin, G. Lippner, D. Mangoubi, S.T. Yau, Li-Yau inequality on graphs, J. Differential Geom. 99, 359-405, (2015). · Zbl 1323.35189
[41] D. Cushing, Sh. Liu, N. Peyerimhoff, Bakry-Émery curvature functions on graphs, Canad. J. Math. 72, 89-143, (2020). · Zbl 1430.05019
[42] F. Münch, Li-Yau inequality on finite graphs via non-linear curvature dimension conditions, J. Math. Pures Appl. 120, 130-164, (2018). · Zbl 1400.05219
[43] M. Schmuckenschläger, Curvature of nonlocal Markov generators, In: Convex geometric analysis, Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 189-197, (1999). · Zbl 0943.60088
[44] J.E. Anderson, I.F. Putnam, Topological invariants for substitution tilings and their asso-ciated C * -algebras, Ergodic Theory Dynam. Systems, 18 (3), 509-537, (1998). · Zbl 1053.46520
[45] M. Baake, U. Grimm, Aperiodic order. Vol. 1, Encyclopedia of Mathematics and its Appli-cations, 149, Cambridge University Press, Cambridge, (2013), A mathematical invitation, With a foreword by Roger Penrose. · Zbl 1295.37001
[46] M. Barge, C. Olimb, Asymptotic structure in substitution tiling spaces, Ergodic Theory Dynam. Systems, 34, no. 1, 55-94, (2014). · Zbl 1290.52018
[47] M. Björklund, T. Hartnick, F. Pogorzelski, Aperiodic order and spherical diffraction, I: auto-correlation of regular model sets, Proc. Lond. Math. Soc. 3, no. 4, 957-996, (2018). · Zbl 1394.52022
[48] M. Björklund, T. Hartnick, Approximate lattices, Duke Math. J. 167, no. 15, 2903-2964, (2018). · Zbl 1452.22002
[49] S. Beckus, T. Hartnick, F. Pogorzelski, Linear repetitivity beyond abelian groups, arXiv-Preprint 2001.10725, (2020).
[50] S. Beckus, T. Hartnick, F. Pogorzelski, Substitution dynamical systems in dilation groups, (2021), in preparation.
[51] F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems, 20, no. 4, 1061-1078, (2000). · Zbl 0965.37013
[52] J. C. Lagarias, P. A. B. Pleasants, Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems 23, no. 3, 831-867, (2003). · Zbl 1062.52021
[53] D. Lenz, Uniform ergodic theorems on subshifts over a finite alphabet, Ergodic Theory Dynam. Systems 22, no. 1, 245-255, (2002). · Zbl 1004.37005
[54] B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally fi-nite tilings, Discrete Comput. Geom. 20, no. 2, 265-279, (1998). · Zbl 0919.52017
[55] M. Baake, U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, Cambridge University Press, Cambridge, (2013). · Zbl 1295.37001
[56] M. Baake, U. Grimm, Aperiodic Order. Vol. 2: Crystallography and Almost Periodicity, Cambridge University Press, Cambridge, (2017). · Zbl 1415.52001
[57] M. Baake, D. Lenz, Spectral notions of aperiodic order, Discrete Contin. Dyn. Syst. Ser. S 10, 161-190, (2017). · Zbl 1373.37031
[58] M. Baake, R. V. Moody, Weighted Dirac combs with pure point diffraction, J. reine angew. Math. (Crelle) 573, 61-94, (2004). · Zbl 1188.43008
[59] E. Bombieri, J. Taylor, Which distributions of matter diffract? An innitial investigation, Journal de Physique Colloques 47(C3), 19-28, (1986). · Zbl 0693.52002
[60] J.-B. Gouéré, Quasicrystals and almost periodicity, Commun. Math. Phys. 255, 655-681, (2005). · Zbl 1081.52020
[61] A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys. 169, 25-43, (1995). · Zbl 0821.60099
[62] J. C. Lagarias, Mathematical quasicrystals and the problem of diffraction. In: Directions in Mathematical Quasicrystals eds. M. Baake and R.V Moody , CRM Monograph Series, Vol 13, (AMS, Providence, RI), 61-93, (2000). · Zbl 1161.52312
[63] D. Lenz, T. Spindeler, N. Strungaru, Pure Point Diffraction and Mean, Besicovitch and Weyl Almost Periodicity, arXiv-Preprint 2006.10821, (2020).
[64] D. Lenz, T. Spindeler, N. Strungaru, Pure point spectrum for dynamical systems and mean, Besicovitch and Weyl almost periodicity, preprint, (2020).
[65] Y. Meyer, Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling, Afr. Diaspora J. Math. 13, 7-45, (2012). · Zbl 1242.52026
[66] D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Metallic phase with long-range orienta-tional order and no translation symmetry, Phys. Rev. Lett. 53, 183-185, (1984).
[67] B. Solomyak, Spectrum of dynamical systems arising from Delone sets, In: Quasicrystals and Discrete Geometry (Toronto, ON, 1995), ( ed. J. Patera), Fields Inst. Monogr., 10, (AMS, Providence, RI), 265-275, (1998).
[68] M. Baake, U. Grimm, Aperiodic order. Vol 1: A mathematical invitation, Cambridge Uni-versity Press, (2013). · Zbl 1295.37001
[69] J. Marklof, A. Strömbergsson, Free path lengths in quasicrystals, Commun. Math. Phys. 32, no. 2, 723-755, (2014). · Zbl 1296.82050
[70] P. Ao, Absence of localization in energy space of a Bloch electron driven by a constant electric force, Phys. Rev. B 41, no. 7, 3998-4001, (1990).
[71] V. S. Buslaev, Kronig-Penney electron in a homogeneous electric field, Differential operators and spectral theory, 45-57, Amer. Math. Soc. Transl. Ser. 2, 189, Adv. Math. Sci., 41, Amer. Math. Soc., Providence, RI, (1999). · Zbl 0935.34072
[72] F. Delyon, B. Simon, B. Souillard, From power pure point to continuous spectrum in disor-dered systems, Ann. Inst. H. Poincaré Phys. Théor. 42, no. 3, 283-309, (1985). · Zbl 0579.60056
[73] A. Kiselev, Y. Last, B. Simon, Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators, Commun. Math. Phys. 194, no. 1, 1-45, (1998). · Zbl 0912.34074
[74] N. Minami, Random Schrödinger operators with a constant electric field, Ann. Inst. H. Poincaré Phys. Théor. 56, no. 3, 307-344, (1992). · Zbl 0752.60052
[75] G. Perelman, Stark-Wannier type operators with purely singular spectrum, Asymptot. Anal. 44, no. 1-2, 1-45, (2005). · Zbl 1093.34048
[76] R. Azencott, Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. France 102, 193-240, (1974). · Zbl 0293.60071
[77] E. B. Davies, Heat kernel bounds, conservation of probability and the Feller property, J. Anal. Math.58, 99-119, (1992). Festschrift on the occasion of the 70th birthday of Shmuel Agmon. · Zbl 0808.58041
[78] M. Folz, Volume growth and stochastic completeness of graphs, Trans. Amer. Math. Soc. 366, no. 4, 2089-2119, (2014). · Zbl 1325.60069
[79] M. P. Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math. 12, 1-11, (1959). · Zbl 0102.09202
[80] A. Grigor’yan, Stochastically complete manifolds, Dokl. Akad. Nauk SSSR, 290, no. 3, 534-537, (1986).
[81] A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36, no. 2, 135-249, (1999). · Zbl 0927.58019
[82] A. Grigor’yan, X. Huang, J. Masamune, On stochastic completeness of jump processes, Math. Z. 271, no. 3-4, 1211-1239, (2012). · Zbl 1408.60076
[83] X. Huang, On stochastic completeness of graphs, Ph.D. Thesis, Bielefeld, (2011).
[84] X. Huang, A note on the volume growth criterion for stochastic completeness of weighted graphs, Potential Anal. 40, no. 2, 117-142, (2014). · Zbl 1282.05061
[85] X. Huang, M. Keller, M. Schmidt, On the uniqueness class, stochastic completeness and volume growth for graphs, arXiv-Preprint 1812.05386, (2018).
[86] X. Huang, Y. Shiozawa, Upper escape rate of Markov chains on weighted graphs, Stochastic Process. Appl. 124, no. 1, 317-347, (2014). · Zbl 1284.60144
[87] L. Karp, P. Li, The heat equation on complete Riemannian manifolds, unpublished.
[88] K.-T. Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p -Liouville properties, J. Reine Angew. Math. 456, 173-196, (1994). · Zbl 0806.53041
[89] M. Takeda, On a martingale method for symmetric diffusion processes and its applications, Osaka J. Math. 26, no. 3, 605-623, (1989). · Zbl 0717.60090
[90] R. K. Wojciechowski, Stochastic completeness of graphs, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)-City University of New York, (2008).
[91] R. K. Wojciechowski, Stochastically incomplete manifolds and graphs, In Random walks, boundaries and spectra, volume 64 of Progr. Probab., pages 163-179. Birkhäuser/Springer Basel AG, Basel, (2011). · Zbl 1221.39008
[92] Uncertainty relations and applications in spectral and control theory Ivan Veselić Unique continuation is a prominent phenomenon encountered in the study of sev-eral classes of functions, e. g. subsets of holomorphic functions or spaces of solutions of partial differential equations. The study of this phenomenon, in the multidimen-sional setting, goes back at least to Carleman and Müller. It is impossible to give here an adequate overview of the gradual development of understanding of this phenomenon. Let us just mention that it has crucial consequences in a plethora of applied problems: Absence of eigenvalues embedded in the continuous spectrum of Schrödinger operators, size and dimensionality of nodal sets of Laplace-Beltrami References
[93] I. Nakić, M. Täufer, M. Tautenhahn, I. Veselić, Unique continuation and lifting of spectral band edges of Schrödinger operators on unbounded domains, J. Spectr. Theory 10, no. 3, With an appendix by A. Seelmann, 843-885, (2020). · Zbl 1461.35171
[94] I. Nakić, M. Täufer, M. Tautenhahn, I. Veselić, Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators, Anal. PDE 11, no. 4, 1049-1081, (2018). · Zbl 1383.35068
[95] I. Nakić, M. Täufer, M. Tautenhahn, I. Veselić, Sharp estimates and homogenization of the control cost of the heat equation on large domains, ESAIM, Control Optim. Calc. Var. 26, 26, (2020). · Zbl 1451.35241
[96] A. Seelmann, M. Täufer, Band edge localization beyond regular Floquet eigenvalues, Ann. Henri Poincaré 21, no. 7, 2151-2166, (2020). · Zbl 07216429
[97] M. Baake,Á. Bustos, C. Huck, M. Lemańczyk, A. Nickel, Number-theoretic positive entropy shifts with small centraliser and large normaliser, Ergod. Th. Dynam. Syst., in press; arXiv-Preprint 1910.13876, (2020).
[98] M. Baake, U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, Cambridge University Press, Cambridge, (2013). · Zbl 1295.37001
[99] M. Baake, C. Huck, N. Strungaru, On weak model sets of extremal density, Indag. Math. 28, 3-31, (2017). · Zbl 1364.82011
[100] M. Baake, R.V. Moody, P.A.B. Pleasants, Diffraction from visible lattice points and k-th power free integers, Discr. Math. 221, 3-42, (2000). · Zbl 1079.52013
[101] M. Baake, D. Lenz, Dynamical systems on translation bounded measures: Pure point dy-namical and diffraction spectra, Ergod. Th. Dynam. Syst. 24, 1867-1893, (2004). · Zbl 1127.37004
[102] M. Baake, J.A.G. Roberts, R. Yassawi, Reversing and extended symmetries of shift spaces, Discr. Cont. Dynam. Syst. A 38, 835-866, (2018). · Zbl 1377.37027
[103] J. Kellendonk, D. Lenz, J. Savinien, Mathematics of Aperiodic Order, Birkhäuser, Basel, (2017).
[104] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North Holland, Amsterdam, (1972). · Zbl 0267.43001
[105] R.V. Moody, Model sets: a survey, in: F. Axel, F. Dénoyer and J.P. Gazeau (eds.) From Quasicrystals to More Complex Systems, Springer, Berlin and EDP Sciences, Les Ulis, pp. 145-166, (2000); arXiv:math.MG/0002020. References
[106] J.-B. Aujougue, Ellis enveloping semigroup for almost canonical model sets of an Euclidean space, Algebr. Geom. Topol. 15, no. 4, 2195-2237, (2015). · Zbl 1353.37034
[107] M. Barge, J. Kellendonk, Complete regularity of Ellis semigroups of Z-actions, Ergodic Theory Dynam. Systems, 1-17, (2020).
[108] G. Fuhrmann, J. Kellendonk, R. Yassawi, Tame or wild Toeplitz shifts, arXiv-Preprint 2010.11128, (2020).
[109] R. Yassawi, Ellis semigroup for bijective substitutions, to appear in Groups, Geometry and Dynamics, arXiv-Preprint 1908.05690, (2020).
[110] M. Brannan, L. Gao, M. Junge, Complete Logarithmic Sobolev inequalities via Ricci curva-ture bounded below, arXiv-Preprint 2007.06138, (2020).
[111] E. Carlen, J. Maas, Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance, J. Funct. Anal. 273, no. 5, 1810-1869, (2017). · Zbl 1386.46057
[112] E. Carlen, J. Maas, Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems, J. Stat. Phys. 178, no. 2, 319-378, (2020). · Zbl 1445.46049
[113] F. Cipriani, J.-L. Sauvageot, Derivations as square roots of Dirichlet forms, J. Funct. Anal. 201, no. 1, 78-120, (2003). · Zbl 1032.46084
[114] F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the loga-rithmic Sobolev inequality, J. Funct. Anal. 173, no. 2, 361-400, (2000). · Zbl 0985.58019
[115] M. Wirth, A Noncommutative Transport Metric and Symmetric Quantum Markov Semi-groups as Gradient Flows of the Entropy, arXiv-Preprint 1808.05419, (2018).
[116] M. Wirth, H. Zhang, Complete gradient estimates of quantum Markov semigroups, arXiv-Preprint 2007.13506, (2020).
[117] Discrete Cheeger-Gromoll splitting theorem Florentin Münch (joint work with Shing-Tung Yau)
[118] An important result in Riemannian geometry is the Cheeger-Gromoll splitting theorem stating that if a manifold with non-negative Ricci curvature possesses a straight line, then it is a Cartesian product of R and another manifold. Since a decade ago, there is growing interest in various discrete Ricci curvature notions, References
[119] Y. Ollivier, Ricci curvature of metric spaces, Comptes Rendus Mathematique 345 11, 643-646, (2007). · Zbl 1132.53011
[120] F. Münch, R. Wojciechowski, Ollivier Ricci curvature for general graph Laplacians: Heat equation, Laplacian comparison, non-explosion and diameter bounds, Advances in Mathe-matics 456, 106759, (2019). Reporter: Siegfried Beckus · Zbl 1426.82055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.