×

Automated filtering in the nonlinear Fourier domain of systematic artifacts in 2D electrical impedance tomography. (English) Zbl 1486.92094

Summary: For patients undergoing mechanical ventilation due to respiratory failure, 2D electrical impedance tomography (EIT) is emerging as a means to provide functional monitoring of pulmonary processes. In EIT, electrical current is applied to the body, and the internal conductivity distribution is reconstructed based on subsequent voltage measurements. However, EIT images are known to often suffer from large systematic artifacts arising from various limitations and exacerbated by the ill-posedness of the inverse problem. The direct D-bar reconstruction method admits a nonlinear Fourier analysis of the EIT problem, providing the ability to process and filter reconstructions in the nonphysical frequency regime. In this work, a technique is introduced for automated Fourier-domain filtering of known systematic artifacts in 2D D-bar reconstructions. The new method is validated using three numerically simulated static thoracic datasets with induced artifacts, plus two experimental dynamic human ventilation datasets containing systematic artifacts. Application of the method is shown to significantly reduce the appearance of artifacts and improve the shape of the lung regions in all datasets.

MSC:

92C55 Biomedical imaging and signal processing
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Adler; R. Guardo; Y. Berthiaume, Impedance imaging of lung ventilation: Do we need to account for chest expansion?, IEEE Tran. Biomedical Engineering, 43, 414-420 (1994) · doi:10.1109/IEMBS.1994.411917
[2] A. Adler et al., GREIT: A unified approach to 2D linear EIT reconstruction of lung images, Physiological Measurement, 30 (2009), 35pp.
[3] G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27, 153-172 (1988) · Zbl 0616.35082 · doi:10.1080/00036818808839730
[4] M. Alsaker; J. Mueller, A D-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. Imaging Sci, 9, 1619-1654 (2016) · Zbl 1381.94007 · doi:10.1137/15M1020137
[5] M. Alsaker, D. A. C. Cárdenas, S. S. Furuie and J. L. Mueller, Complementary use of priors for pulmonary imaging with electrical impedance and ultrasound computed tomography, J. Compu. Appl. Math., 395 (2021), 15pp. · Zbl 1466.92085
[6] M. Alsaker; J. L. Mueller, Use of an optimized spatial prior in D-bar reconstructions of EIT tank data, Inverse Probl. Imaging, 12, 883-901 (2018) · Zbl 1395.94018 · doi:10.3934/ipi.2018037
[7] M. Alsaker; J. L. Mueller; R. Murthy, Dynamic optimized priors for D-bar reconstructions of human ventilation using electrical impedance tomography, J. Comput. Appl. Math., 362, 276-294 (2019) · Zbl 1418.92067 · doi:10.1016/j.cam.2018.07.039
[8] N. Avis and D. Barber, Incorporating a priori information into the Sheffield filtered backprojection algorithm, Physiological Measurement, 16 (1995).
[9] R. H. Bayford, Bioimpedance tomography (electrical impedance tomography), Annu. Rev. Biomed. Eng., 8, 63-91 (2006) · doi:10.1146/annurev.bioeng.8.061505.095716
[10] R. Blue, D. Isaacson and J. C. Newell, Real-time three-dimensional electrical impedance imaging, Physiological Measurement, 21 (2000), 15pp.
[11] K. Boone; D. Holder, Effect of skin impedance on image quality and variability in electrical impedance tomography: A model study, Medical and Biological Engineering and Computing, 34, 351-354 (1996) · doi:10.1007/BF02520003
[12] A. Boyle and A. Adler, Electrode models under shape deformation in electrical impedance tomography, J. Phys.: Conf. Ser., 224 (2010).
[13] A. Boyle; A. Adler; W. R. Lionheart, Shape deformation in two-dimensional electrical impedance tomography, IEEE Tran. Med. Imaging, 31, 2185-2193 (2012) · doi:10.1109/TMI.2012.2204438
[14] C. Bozsak and E. Techner, Mini-Manual Electrical Impedance Tomography (EIT): Device Handling, Application Tips, and Examples, 2018. https://www.draeger.com/Library/Content/EIT-Mini-Manual.pdf
[15] M. Cheney; D. Isaacson; J. C. Newell; S. Simske; J. Goble, NOSER: An algorithm for solving the inverse conductivity problem, Inter. J. Imaging Systems and Technology, 2, 66-75 (1990)
[16] T. de Castro Martins, et al., A review of electrical impedance tomography in lung applications: Theory and algorithms for absolute images, Annual Reviews in Control.
[17] H. Dehghani, D. Barber and I. Basarab-Horwath, Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography, Physiological Measurement, 20 (1999), 87pp.
[18] M. Dodd; J. Mueller, A real-time D-bar algorithm for 2-D electrical impedance tomography data, Inverse Probl. Imaging, 8, 1013-1031 (2014) · Zbl 1328.35304 · doi:10.3934/ipi.2014.8.1013
[19] S. Guan; A. A. Khan; S. Sikdar; P. V. Chitnis, Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal, IEEE J. Biomedical and Health Informatics, 24, 568-576 (2019) · doi:10.1109/JBHI.2019.2912935
[20] R. Guardo; C. Boulay; B. Murray; M. Bertrand, An experimental study in electrical impedance tomography using backprojection reconstruction, IEEE Tran., 38, 617-627 (1991) · doi:10.1109/10.83560
[21] S. Hamilton; A. Hauptmann, Deep d-bar: Real-time electrical impedance tomography imaging with deep neural networks, IEEE Trans. Med. Imaging., 37, 2367-2377 (2018) · doi:10.1109/TMI.2018.2828303
[22] Y. Hayashi et al., Toward improved surveillance: The impact of ventilator-associated complications on length of stay and antibiotic use in patients in intensive care units, Clinical Infectious Diseases, 56, 471-477 (2013)
[23] P. Hua; E. J. Woo; J. G. Webster; W. J. Tompkins, Iterative reconstruction methods using regularization and optimal current patterns in electrical impedance tomography, IEEE Trans. Med. Imaging, 10, 621-628 (1991) · doi:10.1109/42.108598
[24] J. P. Kaipio; V. Kolehmainen; M. Vauhkonen; E. Somersalo, Inverse problems with structural prior information, Inverse Problems, 15, 713-729 (1999) · Zbl 0949.65144 · doi:10.1088/0266-5611/15/3/306
[25] K. Knudsen; M. Lassas; J. L. Mueller; S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imaging., 3, 599-624 (2009) · Zbl 1184.35314 · doi:10.3934/ipi.2009.3.599
[26] J. Kobylianskii; A. Murray; D. Brace; E. Goligher; E. Fan, Electrical impedance tomography in adult patients undergoing mechanical ventilation: A systematic review, J. Critical Care, 35, 33-50 (2016) · doi:10.1016/j.jcrc.2016.04.028
[27] V. Kolehmainen, M. Vauhkonen, P. Karjalainen and J. Kaipio, Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns, Physiological Measurement, 18 (1997).
[28] V. Kolehmainen; M. Lassas; P. Ola, Electrical impedance tomography problem with inaccurately known boundary and contact impedances, IEEE Trans. Med. Imaging, 27, 1404-1414 (2006) · doi:10.1109/ISBI.2006.1625120
[29] K. Lee; E. J. Woo; J. K. Seo, A fidelity-embedded regularization method for robust electrical impedance tomography, IEEE Trans. Med. Imaging, 37, 1970-1977 (2018) · doi:10.1109/TMI.2017.2762741
[30] S. Leonhardt; B. Lachmann, Electrical impedance tomography: The holy grail of ventilation and perfusion monitoring?, Intensive Care Medicine, 38, 1917-1929 (2012) · doi:10.1007/s00134-012-2684-z
[31] D. Liu; J. Du, A moving morphable components based shape reconstruction framework for electrical impedance tomography, IEEE Trans. Med. Imaging, 38, 2937-2948 (2019) · doi:10.1109/TMI.2019.2918566
[32] D. Liu; V. Kolehmainen; S. Siltanen; A.-M. Laukkanen; A. Seppänen, Nonlinear difference imaging approach to three-dimensional electrical impedance tomography in the presence of geometric modeling errors, IEEE Trans. Biomedical Engineering, 63, 1956-1965 (2016) · doi:10.1109/TBME.2015.2509508
[33] D. Liu; D. Smyl; D. Gu; J. Du, Shape-driven difference electrical impedance tomography, IEEE Trans. Med. Imaging, 39, 3801-3812 (2020) · doi:10.1109/TMI.2020.3004806
[34] S. Liu; R. Cao; Y. Huang; T. Ouypornkochagorn; J. Jia, Time sequence learning for electrical impedance tomography using bayesian spatiotemporal priors, IEEE Trans. Instrumentation and Measurement, 69, 6045-6057 (2020) · doi:10.1109/TIM.2020.2972172
[35] S. Liu; J. Jia; Y. D. Zhang; Y. Yang, Image reconstruction in electrical impedance tomography based on structure-aware sparse bayesian learning, IEEE Trans. Med. Imaging, 37, 2090-2102 (2018) · doi:10.1109/TMI.2018.2816739
[36] S. Liu; J. Jia; Y. D. Zhang; Y. Yang, Image reconstruction in electrical impedance tomography based on structure-aware sparse bayesian learning, IEEE Trans. Med. Imaging, 37, 2090-2102 (2018) · doi:10.1109/TMI.2018.2816739
[37] A. Lyckegaard; G. Johnson; P. Tafforeau, Correction of ring artifacts in X-ray tomographic images, Int. J. Tomo. Stat, 18, 1-9 (2011)
[38] S. Martin and C. T. M. Choi, A post-processing method for three-dimensional electrical impedance tomography, Scientific Reports, 7 (2017).
[39] T. Mauri; A. Mercat; G. Grasselli, What’s new in electrical impedance tomography, Intensive Care Medicine, 45, 674-677 (2019) · doi:10.1007/s00134-018-5398-z
[40] M. M. Mellenthin et al., The ace1 electrical impedance tomography system for thoracic imaging, IEEE Tran. Instrumentation and Measurement, 68, 3137-3150 (2019)
[41] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, Computational Science & Engineering, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012. · Zbl 1262.65124
[42] P. A. Muller; J. L. Mueller; M. M. Mellenthin, Real-time implementation of calderón’s method on subject-specific domains, IEEE Tran. Medical Imaging, 36, 1868-1875 (2017)
[43] E. K. Murphy; J. L. Mueller, Effect of domain shape modeling and measurement errors on the 2-d d-bar method for eit, IEEE Tran. Med. Imaging, 28, 1576-1584 (2009) · doi:10.1109/TMI.2009.2021611
[44] A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., 143, 71-96 (1996) · Zbl 0857.35135 · doi:10.2307/2118653
[45] S. Oh, T. Tang and R. Sadleir, Quantitative analysis of shape change in electrical impedance tomography (EIT), In 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, (2007), 424-427.
[46] L. Pinhu; T. Whitehead; T. Evans; M. Griffiths, Ventilator-associated lung injury, The Lancet, 361, 332-340 (2003) · doi:10.1016/S0140-6736(03)12329-X
[47] F. Sadi; S. Y. Lee; M. K. Hasan, Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter, Computers in Biology and Medicine, 40, 109-118 (2010) · doi:10.1016/j.compbiomed.2009.11.007
[48] R. J. Sadleir; R. A. Fox, Detection and quantification of intraperitoneal fluid using electrical impedance tomography, IEEE Tran. Biomedical Engineering, 48, 484-491 (2001) · doi:10.1109/10.915715
[49] S. Siltanen; J. Mueller; D. Isaacson, An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem, Inverse Probl., 16, 681-699 (2000) · Zbl 0962.35193 · doi:10.1088/0266-5611/16/3/310
[50] N. K. Soni; H. Dehghani; A. Hartov; K. D. Paulsen, A novel data calibration scheme for electrical impedance tomography, Physiological Measurement, 24, 421-435 (2003) · doi:10.1088/0967-3334/24/2/354
[51] N. K. Soni; A. Hartov; C. Kogel; S. P. Poplack; K. D. Paulsen, Multi-frequency electrical impedance tomography of the breast: New clinical results, Physiological Measurement, 25, 301-314 (2004) · doi:10.1088/0967-3334/25/1/034
[52] E. Techner, M. Imhoff and S. Leonhardt, Electrical impedance tomography: Electrical impedance tomography: The realisation of regional ventilation monitoring, \(2^nd\) edition, 2015. https://www.draeger.com/Library/Content/EIT-Mini-Manual.pdf
[53] V. Tomicic; R. Cornejo, Lung monitoring with electrical impedance tomography: Technical considerations and clinical applications, J. Thoracic Disease, 11, 3122-3155 (2019) · doi:10.21037/jtd.2019.06.27
[54] S. Vergnole; G. Lamouche; M. L. Dufour, Artifact removal in fourier-domain optical coherence tomography with a piezoelectric fiber stretcher, Optics Letters, 33, 732-734 (2008) · doi:10.1364/OL.33.000732
[55] T. Vu; M. Li; H. Humayun; Y. Zhou; J. Yao, A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer, Experimental Biology and Medicine, 245, 597-605 (2020) · doi:10.1177/1535370220914285
[56] Z. Wang; A. Bovik; H. Sheikh; E. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Tran. Image Processing, 13, 600-612 (2004) · doi:10.1109/TIP.2003.819861
[57] Y. Wu; B. Chen; K. Liu; C. Zhu; H. Pan; J. Jia; H. Wu; J. Yao, Shape reconstruction with multiphase conductivity for electrical impedance tomography using improved convolutional neural network method, IEEE Sensors Journal, 21, 9277-9287 (2021)
[58] G. Zhang et al., An on-line processing strategy for head movement interferences removal of dynamic brain electrical impedance tomography based on wavelet decomposition, Biomedical Engineering Online, 18 (2019).
[59] Q. Zhang et al., Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography, Ophthalmology Retina, 1, 124-136 (2017)
[60] X. Zhang; J. Wang; L. Xing, Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization, Medical Physics, 38, 701-711 (2011) · doi:10.1118/1.3533711
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.