×

Astrophysical chiral dynamos and strain-torsioned Weyl materials. (English) Zbl 1494.83003

Summary: Our goal in this paper is two-fold: First we show that in the absence of four-fermion interactions, from Einstein-Cartan-Maxwell (ECM) anisotropy cosmology, one may derive instabilities in chiral dynamo equations from magnetic perturbations. They are obtained from a model, where the spinning-fluid does not couple directly to the Einstein-Maxwell model. Instead spin fluid enter into the evolution equation of density perturbations. Chiral dynamo equation is obtained from magnetic perturbations in the particular case where the perturbations in the chiral magnetized plasma can be neglected in second order of perturbations. The vanishing of the Nieh-Yan (NY) topological density in this Bianchi type-I model is also investigated. In the second example, use of the magnetic and torsion perturbations are given by the technique of encoding the magnetic perturbations in the metric constrained by teleparallelism. We consider non-uniform chiral chemical potential in the chiral flipping equation in order to obtain the magnetic field dynamo amplification. Dynamo effects are obtained from current perturbations expressed in terms of chiral chemical potential when number density of left-handed chiral particles is approximately zero. The damping found in magnetic field by the end of inflation, may help to explain why so weak galactic dynamo seeds are found at present universe. Furthermore, damping depends upon the strain-torsion relation of the Weyl topological materials. Though in general, torsion does not couple to electromagnetic fields, it influences the magnetic field through strain-torsion pseudo-magnetic potential.

MSC:

83C22 Einstein-Maxwell equations
83F05 Relativistic cosmology
74E10 Anisotropy in solid mechanics
83C50 Electromagnetic fields in general relativity and gravitational theory
35C20 Asymptotic expansions of solutions to PDEs
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
58A15 Exterior differential systems (Cartan theory)
58J52 Determinants and determinant bundles, analytic torsion
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
83E05 Geometrodynamics and the holographic principle
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cabral, F.; Lobo, F. S.N.; Rubiero-Garcia, D., J. Cosmol. Astropart. Phys., 10, 057 (2020) · Zbl 1495.83021
[2] Andrade, L. Garcia de, Eur. Phys. J. C. Eur. Phys. J. C, Eur. Phys. J. C.. Eur. Phys. J. C. Eur. Phys. J. C, Eur. Phys. J. C., Eur. Phys. J. C., 78, 530 (2018)
[3] Weller, J., Phys. Rev. D, 88, Article 083511 pp. (2013)
[4] Dolan, B., Class Quantum Gravity, 27, Article 095010 pp. (2010); Andrade, L. C Garcia de, Symmetry, 8, 122 (2016) · Zbl 1190.83113
[5] Palle, D., Entropy, 1-8 (2012)
[6] Andrade, L. Garcia de, Class Quantum Gravity, 38 (2021) · Zbl 1479.83135
[7] Kleidis, K.; Kouroukidis, A.; Papadopoulos, D.; Vlahos, L., Internat. J. Modern Phys. A, 1697-1710 (2008) · Zbl 1168.85007
[8] Barrow, J.; Tsagas, C.; Faranas, G., Eur. Phys. J. C, 79, 764 (2019); Tsagas, C., Symmetry, 8, 122 (2016); Schober, J.; Fujita, T.; Durrer, R., Phys. Rev. D, 101, 103028 (2020)
[9] Andrade, L. Garcia de, Ann. Phys. (2021), (in press); Garcia de Andrade, L. C., Class Quantum Gravity, 34, 20 (2017) · Zbl 0991.83040
[10] Raychaudhuri, A. K.; Ivanenko, D.; Sardanashvilly, G., Phys. Rep., 94, 1983, 3-45 (1979)
[11] Galitski, V.; kargarian, M.; Syzranov, S., Phys. Rev. Lett., 101, Article 176603 pp. (2018)
[12] de Sabbata, V.; Sivaram, C., World Sci. (1994) · Zbl 0872.53053
[13] Jedamzik, K.; Katalinic, V.; Olinto, A., Phys. Rev. D, 57, 3264-3284 (1998), A Neronov, D Semikoz, Viscous damping by chiral dynamos in the early universe, arXiv:2010.13571
[14] Andrade, L. Garcia de, Eur. Phys. J. Plus, 136, 956 (2021)
[15] Frin, E.; Pinto-Neto, N.; Vitenti, S.; Bergliaffa, S. P., Phys. Rev. D, 101, Article 105503 pp. (2020)
[16] T. Bossimgham, N. Mavromatos, S. Sarkar, The role of temperature dependent string-inspired CPT violation backgrounds in leptogenesis and the chiral magnetic effect, arXiv:1810.13384.
[17] Lammerzahl, C., Phys. Lett. A, 228, 223-231 (1997); Kostelecky, A.; Russell, N.; Tasson, J. D., Phys Rev Lett, 100, 111102 (2008)
[18] Schober, J., Phys. Rev. Lett., 128, Article 065053 pp. (2022); Schober, J.; Rogachevskii, I.; Brandenburg, Axel, Phys Rev D, 105, 043507 (2022); Childress, S.; Gilbert, A. D., Stretch Twist and Fold: The fast dynamo (1998), Springer New York and Berlim
[19] Shaposhnikov, M.; Shkerin, A.; Timiryasov, I.; Zell, S., Phys. Rev. Lett., 126, Article 161301 pp. (2021)
[20] Pavlovich, P.; Sigl, G., J. Cosmol. Astropart. Phys., 1904, 04, 055 (2019); Pavlovich, P.; Leite, N.; Sigl, G., Phys Rev D, 96, 023504 (2017)
[21] Andrade, L. Garcia de, Topology in Einstein-Cartan Magnetogenesis and Dynamo Effects (2021), Lambert Academic publishers, Moldavia republic · Zbl 1483.83068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.