×

Transmission dynamics of a high dimensional rabies epidemic model in a Markovian random environment. (English) Zbl 1495.34069

Summary: This paper develops the spread dynamics of a 11-dimensional stochastic multi-host zoonotic model for the dog-CFB-human transmission of rabies, which is formulated as a piecewise deterministic Markov process. We firstly prove the existence of the global unique positive solution. Then we obtain sufficient conditions for the extinction and persistence of disease. One of the distinct features of this paper is that we prove the positive recurrence of the solution to the model by constructing a series of appropriate Lyapunov functions. Finally, numerical simulations are carried out to illustrate our theoretical results.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
92D30 Epidemiology
34F05 Ordinary differential equations and systems with randomness
60J25 Continuous-time Markov processes on general state spaces
34D05 Asymptotic properties of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] CDC, Rabies-how is rabies transmitted? 2010, http://www.cdc.gov/rabies/transmission/index.html
[2] Tenzin, MP, Ward, review of rabies epidemiology and control in south, southeast and east Asia: past, present and prospects for elimination, Zoonoses Public Health, 59, 451-467 (2012) · doi:10.1111/j.1863-2378.2012.01489.x
[3] Hampson, K.; Dushoff, J.; Bingham, J.; Bruckner, G.; Ali, Y.; Dobson, A., Synchronous cycles of domestic dog rabies in sub-saharan Africa (in capitals) and the impact of control effort, Proc. Natl. Acad. Sci. USA, 104, 7717-7722 (2007) · doi:10.1073/pnas.0609122104
[4] Zinsstag, J.; Durr, S.; Penny, M.; Mindekem, R.; Roth, F.; Gonzalez, S.; Naissengar, S.; Hattendorf, J., Transmission dynamic and economics of rabies control in dogs and humans in an African city, Proc. Natl. Acad. Sci. USA, 106, 14996-15001 (2009) · doi:10.1073/pnas.0904740106
[5] Anderson, RM; Jackson, HC; May, RM; Smith, AM, Population dynamics of fox rabies in Europe, Nature, 289, 765-771 (1981) · doi:10.1038/289765a0
[6] Coyne, MJ; Smith, G.; McAllister, FE, Mathematic model for the population biology of rabies in raccoons in the Mid-Atlantic states, Am. J. Vet. Res., 50, 2148-2154 (1989)
[7] Childs, JE; Curns, AT; Dey, ME; Real, LA; Feinstein, L., Predicting the local dynamics of epizootic rabies among raccoons in the United States, Proc. Natl. Acad. Sci. USA, 97, 13666-13671 (2000) · doi:10.1073/pnas.240326697
[8] Clayton, T.; Duke-Sylvester, S.; Gross, LJ; Lenhart, S.; Real, LA, Optimal control of a rabies epidemic model with a birth pulse, J. Biol. Dyn., 4, 43-58 (2010) · Zbl 1315.92074 · doi:10.1080/17513750902935216
[9] Allen, LJS; Flores, DA; Ratnayake, RK; Herbold, JR, Discrete-time deterministic and stochastic models for the spread of rabies, Appl. Math. Comput., 132, 271-292 (2002) · Zbl 1017.92027
[10] Artois, M.; Langlais, M.; Suppo, C., Simulation of rabies control within an increasing fox population, Ecol. Model., 97, 23-34 (1997) · doi:10.1016/S0304-3800(96)00059-2
[11] Kallen, A.; Arcuri, P.; Murray, JD, A simple model for the spatial spread and control of rabies, J. Theor. Biol., 116, 377-393 (1985) · doi:10.1016/S0022-5193(85)80276-9
[12] Smith, DL; Lucey, B.; Waller, LA; Childs, JE; Real, LA, Predicting the spatial dynamics of rabies epidemic on heterogeneous landscapes, Proc. Natl. Acad. Sci. USA, 99, 3668-3672 (2002) · doi:10.1073/pnas.042400799
[13] Huang, J.; Ruan, S.; Shu, Y.; Wu, X., Modeling the transmission dynamics of Rabies for Dog, Chinese Ferret Badger and human interactions in Zhejiang Province, China, Bull. Math. Biol., 81, 939-962 (2019) · Zbl 1415.92183 · doi:10.1007/s11538-018-00537-1
[14] Liu, Q.; Jiang, D., Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching, Appl. Math. Comput., 316, 310-325 (2018) · Zbl 1426.92080
[15] Wang, L., Jiang, D.: Ergodic property of the chemostat: a stochastic model under regime switching and with general response function. Nonlinear Anal.-Hybrid Syst. 27, 341-352 (2018) · Zbl 1379.92032
[16] Settati, A.; Lahrouz, A., Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput., 244, 235-243 (2014) · Zbl 1335.92084
[17] Zhang, X.; Jiang, D.; Ahmed, A.; Hayat, T., Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett., 59, 87-93 (2016) · Zbl 1343.60095 · doi:10.1016/j.aml.2016.03.010
[18] Gray, A.; Greenhalgh, D.; Mao, X.; Pan, J., The SIS epidemic model with Markovian switching, J. Math. Anal. Appl., 394, 496-516 (2012) · Zbl 1271.92030 · doi:10.1016/j.jmaa.2012.05.029
[19] Mao, X., Stability of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 79, 45-67 (1999) · Zbl 0962.60043 · doi:10.1016/S0304-4149(98)00070-2
[20] Mao, X.; Marion, G.; Renshaw, E., Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[21] Mao, X.; Yuan, C., Stochastic Differential Equations With Markovian Switching (2006), London: Imperial College Press, London · Zbl 1126.60002 · doi:10.1142/p473
[22] Ji, C.; Jiang, D.; Shi, N., Multigroup SIR epidemic model with stochastic perturbation, Physica A., 390, 1747-1762 (2011) · doi:10.1016/j.physa.2010.12.042
[23] Berman, A.; Plemmons, RJ, Nonnegative Matrices in the Mathematical Sciences (1979), New York: Academic Press, New York · Zbl 0484.15016
[24] Khasminskii, R.; Zhu, C.; Yin, G., Stability of regime-switching diffusions, Stochastic Process. Appl., 117, 1037-1051 (2007) · Zbl 1119.60065 · doi:10.1016/j.spa.2006.12.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.