×

Efficient smoothed particle radiation hydrodynamics. I: Thermal radiative transfer. (English) Zbl 07500732

Summary: This work presents efficient solution techniques for radiative transfer in the smoothed particle hydrodynamics discretization. Two choices that impact efficiency are how the material and radiation energy are coupled, which determines the number of iterations needed to converge the emission source, and how the radiation diffusion equation is solved, which must be done in each iteration. The coupled material and radiation energy equations are solved using an inexact Newton iteration scheme based on nonlinear elimination, which reduces the number of Newton iterations needed to converge within each time step. During each Newton iteration, the radiation diffusion equation is solved using Krylov iterative methods with a multigrid preconditioner, which abstracts and optimizes much of the communication when running in parallel. The code is verified for an infinite medium problem, a one-dimensional Marshak wave, and a two and three-dimensional manufactured problem, and exhibits first-order convergence in time and second-order convergence in space. For these problems, the number of iterations needed to converge the inexact Newton scheme and the diffusion equation is independent of the number of spatial points and the number of processors.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Fxx Numerical linear algebra
76Mxx Basic methods in fluid mechanics

Software:

SNSPH; CRKSPH; RADAU; hypre
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Monaghan, Joe J., Smoothed particle hydrodynamics, Rep. Prog. Phys., 68, 8, 1703 (2005)
[2] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Methods Eng., 17, 1, 25-76 (2010) · Zbl 1348.76117
[3] Morris, Joseph Peter, A study of the stability properties of smooth particle hydrodynamics, Publ. Astron. Soc. Aust., 13, 1, 97-102 (1996)
[4] Dilts, Gary A., Moving-least-squares-particle hydrodynamics I: consistency and stability, Int. J. Numer. Methods Eng., 44, 8, 1115-1155 (1999) · Zbl 0951.76074
[5] Dilts, Gary A., Moving least-squares particle hydrodynamics II: conservation and boundaries, Int. J. Numer. Methods Eng., 48, 10, 1503-1524 (2000) · Zbl 0960.76068
[6] Frontiere, Nicholas; Raskin, Cody D.; Owen, J. Michael, CRKSPH-a conservative reproducing kernel smoothed particle hydrodynamics scheme, J. Comput. Phys., 332, 160-209 (2017) · Zbl 1378.76092
[7] Whitehouse, Stuart C.; Bate, Matthew R., Smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation, Mon. Not. R. Astron. Soc., 353, 4, 1078-1094 (2004)
[8] Whitehouse, Stuart C.; Bate, Matthew R.; Monaghan, Joe J., A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation, Mon. Not. R. Astron. Soc., 364, 4, 1367-1377 (2005)
[9] Bate, Matthew R.; Keto, Eric R., Combining radiative transfer and diffuse interstellar medium physics to model star formation, Mon. Not. R. Astron. Soc., 449, 3, 2643-2667 (2015)
[10] Viau, Serge; Bastien, Pierre; Cha, Seung-Hoon, An implicit method for radiative transfer with the diffusion approximation in smooth particle hydrodynamics, Astrophys. J., 639, 1, 559 (2006)
[11] Mayer, Lucio; Lufkin, Graeme; Quinn, Thomas; Wadsley, James, Fragmentation of gravitationally unstable gaseous protoplanetary disks with radiative transfer, Astrophys. J. Lett., 661, 1, L77 (2007)
[12] Brookshaw, Leigh, A method of calculating radiative heat diffusion in particle simulations, Publ. Astron. Soc. Aust., 6, 2, 207-210 (1985)
[13] Petkova, Margarita; Springel, Volker, An implementation of radiative transfer in the cosmological simulation code gadget, Mon. Not. R. Astron. Soc., 396, 3, 1383-1403 (2009)
[14] Altay, Gabriel; Croft, Rupert AC; Pelupessy, Inti, Sphray: a smoothed particle hydrodynamics ray tracer for radiative transfer, Mon. Not. R. Astron. Soc., 386, 4, 1931-1946 (2008)
[15] Nayakshin, Sergei; Cha, Seung-Hoon; Hobbs, Alexander, Dynamic Monte Carlo radiation transfer in SPH: radiation pressure force implementation, Mon. Not. R. Astron. Soc., 397, 3, 1314-1325 (2009)
[16] Fryer, Christopher L.; Rockefeller, Gabriel; Warren, Michael S., Snsph: a parallel three-dimensional smoothed particle radiation hydrodynamics code, Astrophys. J., 643, 1, 292 (2006)
[17] Lowrie, Robert B., A comparison of implicit time integration methods for nonlinear relaxation and diffusion, J. Comput. Phys., 196, 2, 566-590 (2004) · Zbl 1053.65080
[18] Mousseau, V. A.; Knoll, D. A.; Rider, W. J., Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion, J. Comput. Phys., 160, 2, 743-765 (2000) · Zbl 0949.65092
[19] Morel, Jim E.; Larsen, Edward W.; Matzen, M. K., A synthetic acceleration scheme for radiative diffusion calculations, J. Quant. Spectrosc. Radiat. Transf., 34, 3, 243-261 (1985)
[20] Morel, Jim E.; Yang, T-Y Brian; Warsa, James S., Linear multifrequency-grey acceleration recast for preconditioned Krylov iterations, J. Comput. Phys., 227, 1, 244-263 (2007) · Zbl 1127.65075
[21] Brown, Peter N.; Woodward, Carol S., Preconditioning strategies for fully implicit radiation diffusion with material-energy transfer, SIAM J. Sci. Comput., 23, 2, 499-516 (2001) · Zbl 0992.65102
[22] Tetsu, Hiroyuki; Nakamoto, Taishi, Comparison of implicit schemes to solve equations of radiation hydrodynamics with a flux-limited diffusion approximation: Newton-Raphson, operator splitting, and linearization, Astrophys. J. Suppl. Ser., 223, 1, 14 (2016)
[23] Lanzkron, Paul J.; Rose, Donald J.; Wilkes, James T., An analysis of approximate nonlinear elimination, SIAM J. Sci. Comput., 17, 2, 538-559 (1996) · Zbl 0855.65054
[24] Brunner, Thomas A.; Haut, Terry S.; Nowak, Paul F., Nonlinear elimination applied to radiation diffusion, Nucl. Sci. Eng., 1-13 (2020)
[25] Sadat, Hamou, On the use of a meshless method for solving radiative transfer with the discrete ordinates formulations, J. Quant. Spectrosc. Radiat. Transf., 101, 2, 263-268 (2006)
[26] Liu, L. H.; Tan, J. Y., Meshless local Petrov-Galerkin approach for coupled radiative and conductive heat transfer, Int. J. Therm. Sci., 46, 7, 672-681 (2007)
[27] Kindelan, Manuel; Bernal, Francisco; González-Rodríguez, Pedro; Moscoso, Miguel, Application of the RBF meshless method to the solution of the radiative transport equation, J. Comput. Phys., 229, 5, 1897-1908 (2010) · Zbl 1183.65176
[28] Bassett, Brody; Kiedrowski, Brian, Meshless local Petrov-Galerkin solution of the neutron transport equation with streamline-upwind Petrov-Galerkin stabilization, J. Comput. Phys., 377, 1-59 (2019) · Zbl 1416.82005
[29] Rokrok, B.; Minuchehr, H.; Zolfaghari, A., Element-free Galerkin modeling of neutron diffusion equation in x-y geometry, Ann. Nucl. Energy, 43, 39-48 (2012)
[30] Tanbay, Tayfun; Ozgener, Bilge, Numerical solution of the multigroup neutron diffusion equation by the meshless RBF collocation method, Math. Comput. Appl., 18, 3, 399-407 (2013) · Zbl 1390.82059
[31] Birdsall, Charles K., Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms PIC-MCC, IEEE Trans. Plasma Sci., 19, 2, 65-85 (1991)
[32] Falgout, Robert D.; Yang, Ulrike Meier, Hypre: a library of high performance preconditioners, (International Conference on Computational Science (2002), Springer), 632-641 · Zbl 1056.65046
[33] Levermore, C. D., Relating eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transf., 31, 2, 149-160 (1984)
[34] Morel, J. E., Diffusion-limit asymptotics of the transport equation, the P1/3 equations, and two flux-limited diffusion theories, J. Quant. Spectrosc. Radiat. Transf., 65, 5, 769-778 (2000)
[35] Mihalas, Dimitri; Mihalas, Barbara Weibel, Foundations of Radiation Hydrodynamics (2013), Courier Corporation · Zbl 0651.76005
[36] Fleck, J. A.; Cummings, J. D., An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport, J. Comput. Phys., 8, 3, 313-342 (1971) · Zbl 0229.65087
[37] Wendland, Holger, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4, 1, 389-396 (1995) · Zbl 0838.41014
[38] Read, J. I.; Hayfield, T.; Agertz, O., Resolving mixing in smoothed particle hydrodynamics, Mon. Not. R. Astron. Soc., 405, 3, 1513-1530 (jul 2010)
[39] Dehnen, Walter; Aly, Hossam, Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Mon. Not. R. Astron. Soc., 425, 2, 1068-1082 (sep 2012)
[40] Owen, J. Michael, ASPH modeling of material damage and failure, (Proceedings of the 5th International SPHERIC Workshop. Proceedings of the 5th International SPHERIC Workshop, Manchester, UK (Jan 2010)), 297-304
[41] Rider, William J.; Knoll, Dana A., Time step size selection for radiation diffusion calculations, J. Comput. Phys., 152, 2, 790-795 (1999) · Zbl 0940.65101
[42] Hairer, Ernst; Wanner, Gerhard, Stiff differential equations solved by Radau methods, J. Comput. Appl. Math., 111, 1-2, 93-111 (1999) · Zbl 0945.65080
[43] Su, Bingjing; Olson, Gordon L., An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium, Ann. Nucl. Energy, 24, 13, 1035-1055 (1997)
[44] Liu, Wing Kam; Jun, Sukky; Zhang, Yi Fei, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.