×

Scaled constraint qualifications and necessary optimality conditions for nonsmooth mathematical programs with second-order cone complementarity constraints. (English) Zbl 1491.90163

The following minimization problem with second-order cone complementarity constraints is considered: \[ f(z) \rightarrow \min \text{ subject to } G_i(z) \in K_{m_i},~ H_i(z) \subset K_{m_i},~ (G_i(z),H_i(z)) = 0,~ i = 1,\dots, J, \] where \(f: \mathbb{R}^n \rightarrow \mathbb{R},~ G_i: \mathbb{R}^n \rightarrow \mathbb{R}^{m_i},~ i = 1,\dots J\) and \(K_{m_i}\) denotes for all \(i\) the \(m_i\)-dimensional second-order cone. Applications of the minimization problem and their modifications are outlined. It is shown that usually used constraint qualifications as Mangasarian-Fromowitz constraint qualifications cannot be used for this problem. The authors propose new constraint qualifications and study properties of the corresponding new stationary concepts.

MSC:

90C30 Nonlinear programming
90C46 Optimality conditions and duality in mathematical programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alizadeh, F.; Goldfarb, D., Second-order cone programming, Math. Program., 95, 1, 3-51 (2003) · Zbl 1153.90522 · doi:10.1007/s10107-002-0339-5
[2] Faraut J, Koranyi A.: Analysis on symmetric cones. Oxford mathematical monographs (1994) · Zbl 0841.43002
[3] Flegel, ML; Kanzow, C., Abadie-type constraint qualification for mathematical programs with equilibrium constraints, J. Optim. Theory Appl., 124, 3, 595-614 (2005) · Zbl 1090.90200 · doi:10.1007/s10957-004-1176-x
[4] Flegel, ML; Kanzow, C., On M-stationary points for mathematical programs with equilibrium constraints, J. Math. Anal. Appl., 310, 1, 286-302 (2005) · Zbl 1136.90484 · doi:10.1016/j.jmaa.2005.02.011
[5] Flegel, ML; Kanzow, C., On the Guignard constraint qualification for mathematical programs with equilibrium constraints, Optimization, 54, 6, 517-534 (2005) · Zbl 1147.90397 · doi:10.1080/02331930500342591
[6] Flegel, ML; Kanzow, C.; Outrata, JV, Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints, Set-Valued Anal., 15, 2, 139-162 (2007) · Zbl 1149.90143 · doi:10.1007/s11228-006-0033-5
[7] Fukushima, M.; Luo, ZQ; Tseng, P., Smoothing functions for second-order-cone complementarity problems, SIAM J. Optim., 12, 2, 436-460 (2002) · Zbl 0995.90094 · doi:10.1137/S1052623400380365
[8] Hayashi, S.; Yamashita, N.; Fukushima, M., A combined smoothing and regularization method for monotone second-order cone complementarity problems, SIAM J. Optim., 15, 2, 593-615 (2005) · Zbl 1114.90139 · doi:10.1137/S1052623403421516
[9] Henrion, R.; Outrata, JV, A subdifferential condition for calmness of multifunctions, J. Math. Anal. Appl., 258, 1, 110-30 (2001) · Zbl 0983.49010 · doi:10.1006/jmaa.2000.7363
[10] Henrion, R.; Outrata, JV, Calmness of constraint systems with applications, Math. Program., 104, 2, 437-464 (2005) · Zbl 1093.90058 · doi:10.1007/s10107-005-0623-2
[11] Liang, YC; Zhu, XD; Lin, GH, Necessary optimality conditions for mathematical programs with second-order cone complementarity constraints, Set-Valued Var. Anal., 22, 1, 59-78 (2014) · Zbl 1297.90152 · doi:10.1007/s11228-013-0250-7
[12] Mordukhovich, BS, Variational Analysis and Generalized Differentiation I: Basic Theory (2006), Berlin: Springer Science & Business Media, Berlin · doi:10.1007/3-540-31246-3
[13] Mordukhovich, BS, Variational Analysis and Generalized Differentiation, II: Applications (2006), Berlin: Springer, Berlin · doi:10.1007/3-540-31246-3
[14] Mordukhovich, BS, Variational Analysis and Applications (2018), Berlin: Springer International Publishing, Berlin · Zbl 1402.49003 · doi:10.1007/978-3-319-92775-6
[15] Movahedian, N., Bounded Lagrange multiplier rules for general nonsmooth problems and application to mathematical programs with equilibrium constraints, J. Glob. Optim., 67, 4, 829-850 (2017) · Zbl 1365.49016 · doi:10.1007/s10898-016-0442-4
[16] Movahedian, N., Scaled constraint qualifications for generalized equation constrained problems and application to nonsmooth mathematical programs with equilibrium constraints, Positivity, 24, 2, 253-285 (2019) · Zbl 1452.90301 · doi:10.1007/s11117-019-00676-2
[17] Outrata, JV; Sun, D., On the coderivative of the projection operator onto the second-order cone, Set-Valued Anal., 16, 7, 999-1014 (2008) · Zbl 1161.49011 · doi:10.1007/s11228-008-0092-x
[18] Rockafellar, RT; Wets, RJB, Variational Analysis (2009), Berlin: Springer Science & Business Media, Berlin · Zbl 0888.49001
[19] Wu, J.; Zhang, L.; Zhang, Y., A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations, J. Glob. Optim., 55, 2, 359-385 (2013) · Zbl 1287.90070 · doi:10.1007/s10898-012-9880-9
[20] Yamamura, H.; Okuno, T.; Hayashi, S.; Fukushima, M., A smoothing SQP method for mathematical programs with linear second-order cone complementarity constraints, Pacific J. Optim., 9, 2, 345-372 (2013) · Zbl 1272.65054
[21] Yan, T.; Fukushima, M., Smoothing method for mathematical programs with symmetric cone complementarity constraints, Optimization, 60, 1-2, 113-128 (2011) · Zbl 1237.90237 · doi:10.1080/02331934.2010.541458
[22] Ye, JJ, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints, J. Math. Anal. Appl., 307, 1, 350-369 (2005) · Zbl 1112.90062 · doi:10.1016/j.jmaa.2004.10.032
[23] Ye, JJ; Zhou, J., Exact formulas for the proximal/regular/limiting normal cone of the second-order cone complementarity set, Math. Program., 162, 1-2, 33-50 (2017) · Zbl 1361.49009 · doi:10.1007/s10107-016-1027-1
[24] Ye, JJ; Zhou, J., First-order optimality conditions for mathematical programs with second-order cone complementarity constraints, SIAM J. Optim., 26, 4, 2820-2846 (2016) · Zbl 1387.90245 · doi:10.1137/16M1055554
[25] Ye, JJ; Zhu, DL; Zhu, QJ, Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM J. Optim., 7, 2, 481-507 (1997) · Zbl 0873.49018 · doi:10.1137/S1052623493257344
[26] Zhang, Y.; Wu, J.; Zhang, L., First order necessary optimality conditions for mathematical programs with second-order cone complementarity constraints, J. Glob. Optim., 63, 2, 253-279 (2015) · Zbl 1358.90152 · doi:10.1007/s10898-015-0295-2
[27] Zhang, Y.; Zhang, L.; Wu, J., Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints, Set-Valued Var. Anal., 19, 4, 609 (2011) · Zbl 1261.90058 · doi:10.1007/s11228-011-0190-z
[28] Zhang, Y.; Zhang, L.; Wu, J.; Zhang, J., A perturbation approach for an inverse quadratic programming problem over second-order cones, Math. Comput., 84, 291, 209-236 (2015) · Zbl 1308.90140 · doi:10.1090/S0025-5718-2014-02848-2
[29] Zhu, XD; Pang, LP; Lin, GH, Two approaches for solving mathematical programs with second-order cone complementarity constraints, J. Ind. Manag. Optim., 11, 3, 951 (2015) · Zbl 1401.90229
[30] Zhu, X.; Zhang, J.; Zhou, J.; Yang, X., Mathematical programs with second-order cone complementarity constraints: strong stationarity and approximation method, J. Optim. Theory Appl., 181, 2, 521-540 (2019) · Zbl 1414.90335 · doi:10.1007/s10957-018-01464-w
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.